Model-based compressed sensing algorithms for MIMO- OFDM channel estimation
-
2018-03-10 https://doi.org/10.14419/ijet.v7i2.4.10030 -
Sparsity, Compressedsensing, Channelestimation, Compressed Sampling Matching Pursuit, Model-Based Cosamp. -
Abstract
High data rates on the wireless channel can be achieved by combining orthogonal frequency division multiplexing (OFDM) with multiple input multiple output (MIMO) communication modulation scheme. MIMO-OFDM system impulse response of the channel is approximately sparse. Sparse channelestimation can be done using Compressive Sensing (CS) techniques. In this paper, a low complexity model based CoSaMp Compressive Sensing (CS) algorithm with conventional tools namely Least Square (LS) and Least Mean Square (LMS) are used for MIMO-OFDM channel estimation. Simulation results show amodel based CoSaMP for MIMO-OFDM channel estimation with LMS tool the Normalized Mean Square Error(NMSE)reduced by 34%with very reduced complexity.
-
References
[1] Li, Y., “Simplified Channel Estimation for OFDM Systems with Multiple Transmit Antennas,†IEEE Transactions on Communications, vol. 1, pp. 67-75, January 2002.
[2] W. U. Bajwa, J. Haupt, A. M. Sayeed and R. Nowak,“Compressed channel sensing: a new approach toestimating sparse multipath channels,†Proc. IEEE, vol. 98,no. 6, pp. 1058-1076, June 2010.https://doi.org/10.1109/JPROC.2010.2042415.
[3] Z. H. Wang, C. R. Berger, J. Z. Huang and S. L. Zhou, “Application for Compressive Sensing to Sparse Channel Estimationâ€, IEEE Communication Magazine, vol. 48, pp.164-174, November 2010.https://doi.org/10.1109/MCOM.2010.5621984.
[4] R. F. Song, X. Y. He, , and K. Q. Zhou, “Study ofCompressive Sensing Based Sparse Channel Estimation in OFDM Systems†Journal of Nanjing University of PostsandTelecommunications(Natural Science), vol. 30, no. 2,pp. 60-65, 2011.
[5] Jung Nam Ba et.al, “Performance of Multi-user MIMO OFDM Channel Estimation with LS and MMSE for 802.11n Systemsâ€, IEEE Int. conf communication and Information Technology, pp. 1-5, .Sept.2009.
[6] X. Yang, Y. X. Peng, X. F. Zhang, W. B. Wang and B. Wu,“Compressed MIMO-OFDM Channel Estimation,â€Communication Technology IEEE InternationalConferenceon, pp.1291-1294, November 2010.
[7] P N Jayanthi, andS. Ravishankar,"Sparse channel estimation for MIMO-OFDM systems using compressed sensing†IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), pp: 1060-1064., 2016.
[8] J. A. Tropp and D. Needell, “Cosamp:iterative signal recovery from incomplete and inaccurate measurements,†Appl. Comput. Harm. Anal., pp. 301–321, 2009.
[9] Richard G. Baraniuk, Volkan Cevher; Marco F. Duarte; Chinmay Hegde,â€Model-Based Compressive Sensing“.,IEEE Transactions on Information Theory Volume: 56, Issue: 4 pp: 1982 – 2001, 2010.
[10] D. L. Donoho, “Compressed sensing,†IEEE Trans. Inf. Theory, vol.52, no. 4, pp. 1289–1306, Sep. 2006.https://doi.org/10.1109/TIT.2006.871582.
[11] E. J. Candès, “Compressive Sampling,†in Proc. Int. Congr. Math.,Madrid, Spain, 2006, vol. 3, pp. 1433–1452.
[12] R. G. Baraniuk, “Compressive sensing†IEEE Signal Processing Mag.,vol. 24, no. 4, pp. 118–120, Jul. 2007, 124.
[13] E.J Jose et. al. “Signal recovery for random projections,†in Proc. Compute. Imaging III at SPIE Electron. Imaging vol. 5674, pp. 76–86. Jan. 2005.
[14] Qi and L. Wu, “A hybrid compressed sensing algorithm for sparse channel estimation forMIMO OFDM systems,†in Proc. IEEE Int. Conf.Acoust., Speech, Signal Process., May 2011, pp. 3488–3491.
[15] J. A. Tropp and A. C. Gilbert, “Signal Recovery From Random Measurements via OMP,†IEEE Trans. Inf. Theory, vol. 53, no. 12, pp. 4655– 4666, Dec. 2007.https://doi.org/10.1109/TIT.2007.909108.
[16] W. Dai and O. Milenkovic, “Subspace Pursuit for Compressive Sensing Signal Reconstruction,†IEEE Trans. Inf. Theory, vol. 55, no. 5, pp. 2230–2249, Apr. 2009.https://doi.org/10.1109/TIT.2009.2016006.
-
Downloads
-
How to Cite
N. Jayanthi, P., & Ravishankar, S. (2018). Model-based compressed sensing algorithms for MIMO- OFDM channel estimation. International Journal of Engineering & Technology, 7(2.4), 5-9. https://doi.org/10.14419/ijet.v7i2.4.10030Received date: 2018-03-10
Accepted date: 2018-03-10
Published date: 2018-03-10