A novel secret key generation based on image link

  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract

    One of the main problems with symmetric encryption is key distribution especially when involving large number of users i.e to generate identical keys at different locations. To address this challenge, we proposed a novel algorithm of secret key infusion protocol (SKIP) to generatean identical secret key. While, the key is generated based on a provided image link, starting pattern and string length which must be kept in secret as the algorithm is publicly known. The image from website must be a static image and used as the input of random bits to produce string of hexadecimal values. In a case where image link is compromised, the adversary has to guess other layers of parameters in starting pattern and string length. The generated secret keys were identical at two different locations. In other observation, different secret keys were generated even with the same image link and pattern length but different starting pattern.

  • Keywords


  • References

      [1] Ren, K., Su, H., and Wang, Q. 2011. Secret key generation exploiting channel characteristics in wireless communications. IEEE Wirel. Commun., 18(4), 6–12. DOI: 10.1109/MWC.2011.5999759;

      [2] Takesue, H., Sasaki, T., Tamaki, K., and Koashi, M. 2015. Experimental quantum key distribution without monitoring signal disturbance. Nat. Photonics, 9(12), 827–831. DOI: 10.1038/nphoton.2015.173;

      [3] Ning, H., and Wang, Z. 2011. Future Internet of Things architecture: like mankind neural system or social organization framework? IEEE Commun. Lett., 15(4), 461–463. DOI: 10.1109/lcomm.2011.022411.110120;

      [4] Gubbi, J., Buyya, R., Marusic, S., and Palaniswami, M. 2013. Internet of Things (IoT): a vision, architectural elements, and future directions. Futur. Gener. Comput. Syst., 29(7), 1645–1660. DOI: 10.1016/j.future.2013.01.010;

      [5] Jing, Q., Vasilakos, A. V., Wan, J., Lu, J., and Qiu, D. 2014. Security of the Internet of Things: perspectives and challenges. Wirel. Networks, 20(8), 2481–2501. DOI: 10.1007/s11276-014-0761-7;

      [6] Feng, H., and Wah, C. C. 2002. Private key generation from on‐line handwritten signatures. Inf. Manag. Comput. Secur., 10(4), 159–164. DOI: 10.1108/09685220210436949;

      [7] Freire-Santos, M., Fierrez-Aguilar, J., and Ortega-Garcia, J. 2006. Cryptographic key generation using handwritten signature. Proceeding SPIE 6202, Biometric Technol. Hum. Identif. III, 62020N–1–62020N–7. DOI: 10.1117/12.665875;

      [8] Aono, T., Higuchi, K., Ohira, T., Komiyama, B., and Sasaoka, H. 2005. Wireless secret key generation exploiting reactance-domain scalar response of multipath fading channels. IEEE Trans. Antennas Propag., 53(11), 3776–3784. DOI: 10.1109/TAP.2005.858853;

      [9] El Hajj Shehadeh, Y., and Hogrefe, D. 2014. A survey on secret key generation mechanisms on the physical layer in wireless networks. Secur. Commun. Networks, 8(2), 332–341. DOI: 10.1002/sec;

      [10] Wahiddin, M. R., Shanaz Noor Sham, N. S., Saeb, M., and MiorHamdan, M. H. 2010. A protocol for secret key infusion from satellite transmissions. Int. J. Comput. Netw. Secur., 2(7), 99–102.

      [11] Ahmed, F. and Siyal, M. Y. 2005. A novel approach for regenerating a private key using password, fingerprint and smart card. Inf. Manag. Comput. Secur., 13(1), 39–54. DOI: 10.1108/09685220510582665;

      [12] Patwari, N., Croft, J., Jana, S., and Kasera, S. K. 2010. High-rate uncorrelated bit extraction for shared secret key generation from channel measurements. IEEE Trans. Mob. Comput., 9(1), 17–30. DOI: 10.1109/TMC.2009.88;

      [13] Omotosho, A., and Emuoyibofarhe, J. 2015. Private key management scheme using image features. J. Appl. Secur. Res., 10(4), 543–557. DOI: 10.1080/19361610.2015.1069642;




Article ID: 10048
DOI: 10.14419/ijet.v7i2.5.10048

Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.