A shoulder surfing resistance using graphical authentication system

 
 
 
  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract


    Authentication supported passwords is employed mostly in applications for laptop security and privacy. However, human actions like selecting unhealthy passwords and inputting passwords in an insecure approach are considered “the weakest link” within the authentication chain. Instead of impulsive alphanumerical strings, users tend to decide on passwords either short or purposeful for simple learning. With internet applications and mobile apps piling up, individuals will access these applications any time and any place with  numerous devices. This evolution brings nice convenience however additionally will increase the chance of exposing passwords to shoulder surfing attacks. Attackers will observe directly or use external recording devices to gather users’ credentials. To overcome this drawback, we tend to plan a unique authentication system Pass Matrix, supported graphical passwords to resist shoulder surfing attacks. With a one-time valid login indicator and circulatory horizontal and vertical bars covering the  complete scope of pass-images, Pass Matrix offers no hint for attackers to work out or slim down the password even they conduct multiple camera-based attacks. We tend to additionally enforce a Pass Matrix image on android and applied real user experiments to judge   its memorability and usefulness. From the experimental result, the proposed system achieves higher resistance shoulder surfing attacks whereas maintaining usability.


  • Keywords


    Privacy, Security, Authentication, Surfing

  • References


      [1] S. Sood, A. Sarje, and K. Singh, “Cryptanalysis of password authentication schemes: Current status and key issues,” in Methods and Models in Computer Science, 2009. ICM2CS 2009. Proceeding of International Conference on, Dec 2009, pp. 1–7.

      [2] S. Gurav, L. Gawade, P. Rane, and N. Khochare, “Graphical password authentication: Cloud securing scheme,” in Electronic Systems, Signal Processing and Computing Technologies (ICESC), 2014 International Conference on, Jan 2014, pp. 479–483.

      [3] K. Gilhooly, “Biometrics: Getting back to business,” Computerworld, May, vol. 9, 2005.

      [4] Rupavathy N, Dr Carmel Mary Belinda and Alex David S, “Traffic obstruction handling with image processing” International Journal of Civil Engineering and Technology 8(10), pp 56-62.

      [5] R. Dhamija and A. Perrig, “Deja vu: A user study using images for authentication,” in Proceedings of the 9th conference on USENIX Security Symposium-Volume 9. USENIX Association, 2000, pp. 4–4.

      [6] “Realuser,” http://www.realuser.com/.

      [7] I. Jermyn, A. Mayer, F. Monrose, M. Reiter, and A. Rubin, “Thedesign and analysis of graphical passwords,” in Proceedings of the8th conference on USENIX Security Symposium-Volume 8. USENIX Association, 1999, pp. 1–1.

      [8] S. Wiedenbeck, J. Waters, J. Birget, A. Brodskiy, and N. Memon, “Passpoints: Design and longitudinal evaluation of a graphical password system,” International Journal of Human-Computer Studies, vol. 63, no. 1-2, pp. 102–127, 2005.

      [9] A. Paivio, T. Rogers, and P. Smythe, “Why are pictures easier to recall than words?” Psychonomic Science, 1968.

      [10] Rupavathy N, Dr Carmel Mary Belinda and Nivedhitha.G, “A mobile application using IoT enabled navigation system for bus riders” International Journal of Engineering &Technology, Vol 7 (1.7) (2018) 71-74.

      [11] D. Nelson, U. Reed, and J. Walling, “Picture superiority effect,” Journal of Experimental Psychology: Human Learning and Memory, vol. 3, pp. 485–497, 1977.

      [12] S. Brostoff and M. Sasse, “Are passfaces more usable than passwords? a field trial investigation,” PEOPLE AND COMPUTERS, pp. 405–424, 2000.


 

View

Download

Article ID: 10644
 
DOI: 10.14419/ijet.v7i1.7.10644




Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.