Heterogeneous networked data recovery from compressive measurements using a copular
-
2018-03-18 https://doi.org/10.14419/ijet.v7i2.7.11437 -
Use about five key words or phrases in alphabetical order, Separated by Semicolon. -
Abstract
Expansive scale information accumulation by methods for remote sensor system and web of-things innovation postures different difficulties in perspective of the confinements in transmission, calculation, and vitality assets of the related remote gadgets. Com-pressive information gathering in light of packed detecting has been demonstrated an appropriate answer for the issue. Existing plans misuse the spatiotemporal connections among information gathered by a particular detecting methodology. Be that as it may, numerous applications, for example, ecological checking, include gathering heterogeneous information that are inherently corresponded. By this examination, we are trying to propose the use of relationship from different heterogeneous signs while recouping the information from compressive estimations.
Â
Â
-
References
[1] J. Inglada and A. Giros, “On the real capabilities of remote sensing for disaster management—Feedback from real cases,†in Proc. IEEE IGARSS, Sep. 22–24, 2004, vol. 2, pp. 1110–1112.
[2] A. Singh, “Digital change detection techniques using remotely-sensed data,†Int. J. Remote Sens., vol. 10, no. 6, pp. 989–1003, 1989.
[3] C. Oliver and S. Quegan, Understanding Synthetic Aperture Radar Images. Norwood, MA: Artech House, 1998.
[4] F. Melgani, G. Moser, and B. Serpico, “Unsupervised change-detection methods for remote-sensing images,†Opt. Eng., vol. 41, no. 12, pp. 3288– 3297, Dec. 2002.
[5] Y. Bazi, L. Bruzzone, and F. Melgani, “An unsupervised approach based on the generalized Gaussian model to automatic change detection in multitemporal SAR images,†IEEE Trans. Geosci. Remote Sens., vol. 43, no. 4, pp. 874–887, Apr. 2005.
[6] G. Moser and S. B. Serpico, “Generalized minimum-error thresholding for unsupervised change detection from SAR amplitude imagery,†IEEE Trans. Geosci. Remote Sens., vol. 44, no. 10, pp. 2972–2982, Oct. 2006.
[7] L. Bruzzone and D. F. Prieto, “Automatic analysis of the difference image for unsupervised change detection,†IEEE Trans. Geosci. Remote Sens., vol. 38, no. 3, pp. 1171–1182, May 2000.
[8] K. Conradsen, A. A. Nielsen, J. Schou, and H. Skriver, “A test statistic in the complex Wishart distribution and its application to change detection in polarimetric SAR data,†IEEE Trans. Geosci. Remote Sens., vol. 41, no. 1, pp. 4–19, Jan. 2003.
[9] G. Moser, S. B. Serpico, and G. Vernazza, “Unsupervised change detection from multichannel SAR images,†IEEE Geosci. Remote Sens. Lett. vol. 4, no. 2, pp. 278–282, Apr. 2007.
[10] J. Inglada and G. Mercier, “A new statistical similarity measure for change detection in multitemporal SAR images and its extension to multiscale change analysis,†IEEE Trans. Geosci. Remote Sens., vol. 45, no. 5, pp. 1432–1446, May 2007.
[11] E. J. M. Rignot and J. J. van Zyl, “Change detection techniques for ERS-1 SAR data,†IEEE Trans. Geosci. Remote Sens., vol. 31, no. 4, pp. 896–906, Jul. 1993
[12] .R. Touzi, A. Lopès, and P. Bousquet, “A statistical and geometrical edge detector for SAR images,†IEEE Trans. Geosci. Remote Sens., vol. 26, no. 6, pp. 764–773, Nov. 1988.
[13] F. Bujor, E. Trouvé, E. Valet, J. Nicolas, and J. Rudant, “Application of log-cumulants to the detection of spatiotemporal discontinuities in multitemporal SAR images,†IEEE Trans. Geosci. Remote Sens., vol. 42, no. 10, pp. 2073–2084, Oct. 2004.
[14] V. Alberga, M. Idrissa, V. Lacroix, and J. Inglada, “Comparison of similarity measures of multi-sensor images for change detection applications,†in Proc. IEEE IGARSS, Barcelona, Spain, Jul. 23–27, 2007, pp. 2358–2361.
[15] J. Inglada and G. Mercier, “The multiscale change profile: A statistical similarity measure for change detection in multitemporal SAR images,†in Proc. IGARSS, 2006, pp. 212–215.
[16] M. Basseville and I. Nikiforov, Detection of Abrupt Changes: Theory and Application. Englewood Cliffs, NJ: Prentice-Hall, 1993.
[17] M. G. Kendall, the Advanced Theory of Statistics, vol. II. London, U.K.: Griffin, 1945.
[18] J. Inglada, J.-C.Favard, H. Yesou, S. Clandillon, and C. Bestault, “Lava flow mapping during the Nyiragongo January, 2002 eruption over the city of Goma (D.R. Congo) in the frame of the international charter space and major disasters,†in Proc. IGARSS, Jul. 21–25, 2003, vol. 3, pp. 1540–1542.
[19] M. Buchinsky, “Recent advances in quantile regression models: A practical guideline for empirical research,†J. Hum. Resour., vol. 33, no. 1, pp. 88–126, 1998.
[20] R. Koenker and J. Gilbert Bassett, “Regression quantiles,†Econometrica, vol. 46, no. 1, pp. 33–50, Jan. 1978.
-
Downloads
-
How to Cite
K. Raghavarao, D., Vamsi Krishna, M., Sai Chaitanya, P., & ShivaKumar, E. (2018). Heterogeneous networked data recovery from compressive measurements using a copular. International Journal of Engineering & Technology, 7(2.7), 968-971. https://doi.org/10.14419/ijet.v7i2.7.11437Received date: 2018-04-12
Accepted date: 2018-04-12
Published date: 2018-03-18