Nonlinear Vibration of Microbeams Based on The Elastics Foundation Using High-Order Energy Balance Method and Global Error Minimization Method

 
 
 
  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract


    In this paper, nonlinear vibration of microbeams based on the nonlinear  elastic  foundation  is  investigated. The  equation  of motion of microbeams based on three-layered nonlinear elastic medium (shear, linear and nonlinear layers) is described by the partial differential equation by using the modified couple stress theory.  The equation of motion of microbeams is transformed  into the ordinary differential equation by using Galerkin method. The high-order Energy Balance  method and the high-order Global Error Minimization method are  used  to  get  the  frequency –  amplitude relationships  for  the  nonlinear  vibration  of  microbeams  with pinned-pinned  and  clamped-clamped  end  conditions. Comparisons between the present solutions and the privious solutions  show  the  accuracy  of  the  obtained  results.

     

     


  • Keywords


    Microbeams, nonlinear vibration, Energy Balance method, Global Error Minimization method.

  • References


      [1] Senturia, S. D., Microsystem design. Boston: Kluwer Academic Publishers, (2001).

      [2] McFarland, A. W., and Colton, J. S., “Role of material microstructure in plate stiffness with relevance to microcantilever sensors”. Journal of Micromechanical and Microengineering, Vol.15 (2005), pp. 1060–1067.

      [3] Toupin, R. A., “Elastic materials with couple stresses. Archives of Rational of Mechanical and Analysis”, Vol. 11(1962), pp. 385–414.

      [4] Mindlin R. D., Tiersten H. F., “Effects of couple-stresses in linear elasticity”. Archive for Rational Mechanics and Analysis; Vol.11(1962), pp.415–48.

      [5] Mindlin R. D., “Influence of couple-stresses on stress concentrations”. Experimental Mechanics;Vol. 3(1963), pp.1–7.

      [6] Aifantis E. C., “Strain gradient interpretation of size effects”. International Journal of Fracture;Vol. 95(1999), pp.1–4.

      [7] Eringen A. C., “Theory of micropolar plates”. Zeitschrift für angewandte Mathematik und Physik;Vol.18(1967), pp.12–30.

      [8] Eringen A. C., “Nonlocal polar elastic continua”. International Journal of Engineering Science; Vol.10(1972), pp. 1–16.

      [9] Gurtin M. E., Weissmuller J., Larche F., “The general theory of curved deformable interfaces in solids at equilibrium”. Philosophical Magazine A (1998); pp. 1093–109.

      [10] Yang, F., Chong, A. C. M., Lam, D. C. C., & Tong, P., “Couple stress based strain gradient theory for elasticity”. International Journal of Solids and Structures,Vol.39(2002),pp. 2731–2743.

      [11] Ma H. M., Gao X. L., Reddy J. N., “A microstructure-dependent Timoshenko beam model based on a modified couple stress theory”. Journal of the Mechanics and Physics of Solids; Vol.56(2008), pp.3379–91.

      [12] Kong S., Zhou S., Nie Z., Wang K., “The size-dependent natural frequency of Bernoulli–Euler micro-beams”. International Journal of Engineering Science;Vol. 46(2008), pp.427–37.

      [13] Ma H. M., Gao X. L., Reddy J. N., “A nonclassical Reddy– Levinson beam model based on a modified couple stress theory”. International Journal for Multiscale Computational Engineering; Vol.8(2010), pp. 167–80.

      [14] Wang B., Zhao J., Zhou S., “A micro scale Timoshenko beam model based on strain gradient elasticity theory”. European Journal of Mechanics - A/Solids; Vol.29(2010), pp.591–9.

      [15] Wang L., “Size-dependent vibration characteristics of fluid-conveying microtubes”. Journal of Fluids and Structures; Vol.26(2010), pp.675–84.

      [16] Simsek M., “Dynamic analysis of an embedded microbeam carrying a moving microparticle based on the modified couple stress theory”. International Journal of Engineering Science; Vol.48(2010), pp.1721–32.

      [17] Simsek M., Kocatürk T., Akbas S. D., “Static bending of a functionally graded microscale Timoshenko beam based on the modified couple stress theory”. Composite Structures;Vol. 95(2013), pp.740–7.

      [18] Simsek M., “Nonlinear static and free vibration analysis of microbeams based on the nonlinear elastic foundation using modified couple stress theory and He’s variational method”. Composite Structures; Vol.112(2014), pp. 264–272.

      [19] J. H. He, “Preliminary report on the energy balance for nonlinear oscillations”. Mechanics Research Communications, 29(2-3):107–111.

      [20] J. H. He, “Variational approach for nonlinear oscillators. Chaos”, Solitons Fractals; Vol.34(2007), pp. 1430–9.

      [21] J. H. He., “Hamiltonian approach to nonlinear oscillators”. Physics Letters A.Vol.374(2010), pp. 2312–2314.

      [22] Yadollah Farzaneh, Ali Akbarzadeh Tootoonchi. “Global Error Minimization method for solving strongly nonlinear oscillator differential equations”. Computers and Mathematics with Applications, Vol.59 (2010), pp. 2887-2895.

      [23] Seher Durmaz and Metin Orhan Kaya. “High-Order Energy Balance Method to Nonlinear Oscillators”. Journal of Applied Mathematics, Vol. 2012(2012).

      [24] Azrar L., Benamar R., White R. G., “A semi-analytical approach to the nonlinear dynamic response problem of S–S and C–C beams at large vibration amplitudes. Part I: General theory and application to the single mode approach to free and forced vibration analysis”. Journal of Sound and Vibration; Vol.224(1999), pp.183–207.


 

View

Download

Article ID: 11882
 
DOI: 10.14419/ijet.v7i2.23.11882




Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.