Nonlinear Vibration of Microbeams Based on The Elastics Foundation Using High-Order Energy Balance Method and Global Error Minimization Method
-
2018-04-20 https://doi.org/10.14419/ijet.v7i2.23.11882 -
Microbeams, nonlinear vibration, Energy Balance method, Global Error Minimization method. -
Abstract
In this paper, nonlinear vibration of microbeams based on the nonlinear elastic foundation is investigated. The equation of motion of microbeams based on three-layered nonlinear elastic medium (shear, linear and nonlinear layers) is described by the partial differential equation by using the modified couple stress theory. The equation of motion of microbeams is transformed into the ordinary differential equation by using Galerkin method. The high-order Energy Balance method and the high-order Global Error Minimization method are used to get the frequency – amplitude relationships for the nonlinear vibration of microbeams with pinned-pinned and clamped-clamped end conditions. Comparisons between the present solutions and the privious solutions show the accuracy of the obtained results.
Â
Â
-
References
[1] Senturia, S. D., Microsystem design. Boston: Kluwer Academic Publishers, (2001).
[2] McFarland, A. W., and Colton, J. S., “Role of material microstructure in plate stiffness with relevance to microcantilever sensorsâ€. Journal of Micromechanical and Microengineering, Vol.15 (2005), pp. 1060–1067.
[3] Toupin, R. A., “Elastic materials with couple stresses. Archives of Rational of Mechanical and Analysisâ€, Vol. 11(1962), pp. 385–414.
[4] Mindlin R. D., Tiersten H. F., “Effects of couple-stresses in linear elasticityâ€. Archive for Rational Mechanics and Analysis; Vol.11(1962), pp.415–48.
[5] Mindlin R. D., “Influence of couple-stresses on stress concentrationsâ€. Experimental Mechanics;Vol. 3(1963), pp.1–7.
[6] Aifantis E. C., “Strain gradient interpretation of size effectsâ€. International Journal of Fracture;Vol. 95(1999), pp.1–4.
[7] Eringen A. C., “Theory of micropolar platesâ€. Zeitschrift für angewandte Mathematik und Physik;Vol.18(1967), pp.12–30.
[8] Eringen A. C., “Nonlocal polar elastic continuaâ€. International Journal of Engineering Science; Vol.10(1972), pp. 1–16.
[9] Gurtin M. E., Weissmuller J., Larche F., “The general theory of curved deformable interfaces in solids at equilibriumâ€. Philosophical Magazine A (1998); pp. 1093–109.
[10] Yang, F., Chong, A. C. M., Lam, D. C. C., & Tong, P., “Couple stress based strain gradient theory for elasticityâ€. International Journal of Solids and Structures,Vol.39(2002),pp. 2731–2743.
[11] Ma H. M., Gao X. L., Reddy J. N., “A microstructure-dependent Timoshenko beam model based on a modified couple stress theoryâ€. Journal of the Mechanics and Physics of Solids; Vol.56(2008), pp.3379–91.
[12] Kong S., Zhou S., Nie Z., Wang K., “The size-dependent natural frequency of Bernoulli–Euler micro-beamsâ€. International Journal of Engineering Science;Vol. 46(2008), pp.427–37.
[13] Ma H. M., Gao X. L., Reddy J. N., “A nonclassical Reddy– Levinson beam model based on a modified couple stress theoryâ€. International Journal for Multiscale Computational Engineering; Vol.8(2010), pp. 167–80.
[14] Wang B., Zhao J., Zhou S., “A micro scale Timoshenko beam model based on strain gradient elasticity theoryâ€. European Journal of Mechanics - A/Solids; Vol.29(2010), pp.591–9.
[15] Wang L., “Size-dependent vibration characteristics of fluid-conveying microtubesâ€. Journal of Fluids and Structures; Vol.26(2010), pp.675–84.
[16] Simsek M., “Dynamic analysis of an embedded microbeam carrying a moving microparticle based on the modified couple stress theoryâ€. International Journal of Engineering Science; Vol.48(2010), pp.1721–32.
[17] Simsek M., Kocatürk T., Akbas S. D., “Static bending of a functionally graded microscale Timoshenko beam based on the modified couple stress theoryâ€. Composite Structures;Vol. 95(2013), pp.740–7.
[18] Simsek M., “Nonlinear static and free vibration analysis of microbeams based on the nonlinear elastic foundation using modified couple stress theory and He’s variational methodâ€. Composite Structures; Vol.112(2014), pp. 264–272.
[19] J. H. He, “Preliminary report on the energy balance for nonlinear oscillationsâ€. Mechanics Research Communications, 29(2-3):107–111.
[20] J. H. He, “Variational approach for nonlinear oscillators. Chaosâ€, Solitons Fractals; Vol.34(2007), pp. 1430–9.
[21] J. H. He., “Hamiltonian approach to nonlinear oscillatorsâ€. Physics Letters A.Vol.374(2010), pp. 2312–2314.
[22] Yadollah Farzaneh, Ali Akbarzadeh Tootoonchi. “Global Error Minimization method for solving strongly nonlinear oscillator differential equationsâ€. Computers and Mathematics with Applications, Vol.59 (2010), pp. 2887-2895.
[23] Seher Durmaz and Metin Orhan Kaya. “High-Order Energy Balance Method to Nonlinear Oscillatorsâ€. Journal of Applied Mathematics, Vol. 2012(2012).
[24] Azrar L., Benamar R., White R. G., “A semi-analytical approach to the nonlinear dynamic response problem of S–S and C–C beams at large vibration amplitudes. Part I: General theory and application to the single mode approach to free and forced vibration analysisâ€. Journal of Sound and Vibration; Vol.224(1999), pp.183–207.
-
Downloads
-
How to Cite
V. Hieu, D. (2018). Nonlinear Vibration of Microbeams Based on The Elastics Foundation Using High-Order Energy Balance Method and Global Error Minimization Method. International Journal of Engineering & Technology, 7(2.23), 47-56. https://doi.org/10.14419/ijet.v7i2.23.11882Received date: 2018-04-22
Accepted date: 2018-04-22
Published date: 2018-04-20