Exploiting tensor-space similarity measures in image and video processing
-
2019-03-22 https://doi.org/10.14419/ijet.v7i4.12700 -
Gradient Fields, Image Analysis, Local Structures, Motion Estimation, Similarity Measure, Structure Tensor. -
Abstract
Measuring the similarity between images is a crucial process for several image and video processing applications. For instance, it is used in image inpainting, image retrieval, pattern recognition, as well as image and video compression. Traditional intensity-based approaches have shown efficiency in different situations and scenarios. However, failures still exist, especially in the case of high local structural variation images. In this paper, different tensor-based metrics that reveal the local structural information are presented and evaluated in several dissimilarity estimation contexts. Results show that using these metrics, relevant dissimilarities of local patterns can be better detected, thus helping standard intensity-based image inpainting algorithms, motion estimation methods and the analysis of medical images.
Â
Â
 -
References
[1] A. Akl, C. Yaacoub, M. Donias, J.P. Da Costa, C. Germain, “Structure tensor-based synthesis of directional textures for virtual material designâ€, Proceedings of the 21st IEEE International Conference on Image Processing (ICIP), (2014).
[2] A. Akl, C. Yaacoub, M. Donias, J.P. Da Costa, C. Germain, “Texture synthesis using the structure tensorâ€, IEEE Transactions on Image Processing, Vol. 24, No. 11, (2015), pp. 4082-4095. https://doi.org/10.1109/TIP.2015.2458701.
[3] G. Peyré, “Texture Synthesis with groupletsâ€, IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 32, No. 4, (2009), pp:733-746. https://doi.org/10.1109/TPAMI.2009.54.
[4] A. Akl, E. Saad, C. Yaacoub, “Structure-Based Image Inpaintingâ€, Proceedings of the 6th International Conference on Image Processing Theory, Tools and Applications, (2016). https://doi.org/10.1109/IPTA.2016.7820976.
[5] A. Akl, R. Gemayel, N. Alkhoury, C. Yaacoub, “Structure-Based Motion Estimation for Video Compressionâ€, Proceedings of the International Multidisciplinary Conference on Engineering Technology, (2016). https://doi.org/10.1109/IMCET.2016.7777420.
[6] S. Ghanavati, T. Liu, P.S. Babyn, W. Doda, G. Lampropoulos, “Automatic brain tumor detection in magnetic resonance imagesâ€, Proceedings of the 9th IEEE International Symposium on Biomedical Imaging, (2012).
[7] T. Sugimoto, S. Katsuragawa, T. Hirai, R. Murakami, Y. Yamashita, “Computerized detection of metastatic brain tumors on contrast-enhanced 3D MR images by using a selective enhancement filterâ€, Proceedings of the 2010 World Congress on Medical Physics and Biomedical Engineering, (2010).
[8] R. Ambrosini, P. Wang, “Computer-aided detection of metastatic brain tumors using automated three-dimensional template matchingâ€, Journal of MRI, Vol. 31, No. 1, (2010), pp: 85-93. https://doi.org/10.1002/jmri.22009.
[9] N. Ray, B.N. Saha, M. Brown, “Locating brain tumors from MR imagery using symmetryâ€, Proceedings of the 41st Asilomar Conference on Signals, Systems and Computers, (2007). https://doi.org/10.1109/ACSSC.2007.4487200.
[10] S. Sevestre-Ghalila, A. Benazza-Benyahia, A. Ricordeau, N. Mellouli, C. Chappard, C. Benhamou, “Texture image analysis for osteoporosis detection with morphological toolsâ€, Barillot C, Haynor D R, Hellier P (eds) Medical Image Computing and Computer-Assisted Intervention. Lecture Notes in Computer Science, Springer, (2004), pp: 87-94. https://doi.org/10.1007/978-3-540-30135-6_11.
[11] D.W. Dempster, “The contribution of trabecular architecture to cancellous bone qualityâ€, J Bone Miner Res, Vol. 15, No. 1, (2000), pp: 20-23. https://doi.org/10.1359/jbmr.2000.15.1.20.
[12] A.S. Hassani, M. Hassouni, R. Jennane, M. Rziza, E. Lespessailles, “Texture analysis for trabecular bone X-ray images using anisotropic Morlet wavelet and Rényi entropyâ€, Proceedings of the International Conference on Image and Signal Processing, (2012). https://doi.org/10.1007/978-3-642-31254-0_33.
[13] C. Zhu, “Remote sensing image texture analysis and classification with wavelet transformâ€, International Archives of Photogrammetry and Remote Sensing, Vol. 19, No. 16, (1996).
[14] K. Wikantika, A. Harto, R. Tateishi, “The use of spectral and textural features from Landsat TM image for land cover classification in mountainous areaâ€, Proceedings of the 2001 IECL Japan workshop, (2001).
[15] A. C. Beers, M. Agrawala, N. Chaddha, “Rendering from compressed texturesâ€, Proceedings of the 23rd annual conference on Computer graphics and interactive techniques, ACM, (1996), pp: 373-378.
[16] W. Sun, Y. Lu, F. Wu, S. Li, J. Tardif, “High-Dynamic-Range Texture Compression for Rendering Systems of Different Capacitiesâ€, IEEE Trans. on Visualization and Computer Graphics, Vol. 16, No. 1, (2010), pp: 57-69. https://doi.org/10.1109/TVCG.2009.60.
[17] J.M. Leyssale, J.-P. Da Costa, C. Germain, P. Weisbecker, G. Vignoles, “An image-guided atomistic reconstruction of pyrolytic carbonsâ€, Applied Physics Letters, Vol. 95, No. 23, (2009). https://doi.org/10.1063/1.3272949.
[18] C. Chapoullie, “Analyse/synthese tridimensionnelle de textures fibreuses “, PhD dissertation, University of Bordeaux, (2014).
[19] A. Akl, J. Iskandar, “Structure tensor regularization for texture analysisâ€, Proceedings of the 5th International Conference on Image Processing Theory, Tools and Applications, (2015). https://doi.org/10.1109/IPTA.2015.7367217.
[20] R. Paget, I. Longstaff, “Texture synthesis via a noncausal nonparametric multiscale Markov random fieldâ€, IEEE Trans. on Image Processing, Vol. 7, No. 6, (1998), pp: 925-931. https://doi.org/10.1109/83.679446.
[21] J. Portilla, E.P. Simoncelli, “A Parametric Texture Model based on Joint Statistics of Complex Wavelet Coefficientsâ€, International Journal of Computer Vision, Vol. 40, No. 1, (2000), pp: 49-71. https://doi.org/10.1023/A:1026553619983.
[22] R. Pless, I. Simon I, “Using thousands of images of an objectâ€, Proceedings of the 6th Joint Conference on Information Science, (CVPRIP), (2002).
[23] S. Bhandarkar, F. Chen, “Similarity Analysis of Video Sequences Using an Artificial Neural Networkâ€, Applied Intelligence, Vol. 22, No. 3, (2005), pp: 251-275. https://doi.org/10.1007/s10791-005-6622-3.
[24] A. Akl, J. Iskandar, “Second-moment matrix adaptation for local orientation estimationâ€, Proceedings of the 23rd International Conference on Systems, Signals and Image Processing, (2016). https://doi.org/10.1109/IWSSIP.2016.7502721.
[25] J. P. Antoine, P. Carrette, R, Murenzi, B. Piette, “Image analysis with two-dimensional continuous wavelet transformâ€, Signal Processing, Vol. 31, No. 3, (1993), pp: 241-272. https://doi.org/10.1016/0165-1684(93)90085-O.
[26] W. Tang, Y. Wang Y, W. He, “An image segmentation algorithm based on improved multiscale random field model in wavelet domainâ€, Journal of Ambient Intelligence and Humanized Computing, Vol. 7, No. 2, (2016), pp: 221-228. https://doi.org/10.1007/s12652-015-0318-3.
[27] Z. Wu, J. Yuan, J. Zhang, H. Huang, “A hierarchical face recognition algorithm based on humanoid nonlinear least-squares computationâ€, Journal of Ambient Intelligence and Humanized Computing, Vol. 7, No. 2, (2016), pp: 229-238. https://doi.org/10.1007/s12652-015-0321-8.
[28] P.A. Sahoo, “Thresholding method based on two-dimensional renyis entropyâ€, Pattern Recognition, Vol. 37, No. 6, (2004), pp: 1149-1161. https://doi.org/10.1016/j.patcog.2003.10.008.
[29] L. Houam, A. Hafiane, R. Jennane, A. Boukrouche, E. Lespessailles, “Trabecular bone anisotropy characterization using 1d local binary patternsâ€, Blanc-Talon J, Bone D, Philips W, Popescu D, Scheunders P (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2010. Lecture Notes in Computer Science, Springer, (2010), pp: 105-113. https://doi.org/10.1007/978-3-642-17688-3_11.
[30] C. L. Benhamou, S. Poupon, E. Lespessailles, S. Loiseau, R. Jennane, V. Siroux, W. Ohley, L. Pothuaud, “Fractal analysis of radiographic trabecular bone texture and bone mineral density: two complementary parameters related to osteoporotic fracturesâ€, J Bone Miner Res, Vol. 16, No. 4. (2001), pp:. 697-704. https://doi.org/10.1359/jbmr.2001.16.4.697
[31] R. Jennane, W.J. Ohley, S. Majumdar, G. Lemineur, “Fractal analysis of bone x-ray tomographic microscopy projectionsâ€, IEEE Trans. Med. Imaging, Vol. 20, No. 5, (2001), pp: 443-449. https://doi.org/10.1109/42.925297.
[32] L. Pothuaud, E. Lespessailles, R. Harba, R. Jennane, V. Royant, E. Eynard, C.L. Benhamou, “Fractal Analysis of Trabecular Bone Texture on Radiographs: Discriminant Value in Postmenopausal Osteoporosisâ€, Osteoporosis International, Vol. 8, No. 6, (1998), pp: 618-625. https://doi.org/10.1007/s001980050108.
[33] L. Dryden, A. Koloydenko, D. Zhou, “Non-Euclidean Statistics for Covariance Matrices, with Applications to Diffusion Tensor Imagingâ€, Annals of Applied Statistics, Vol. 3, No. 3, (2009), pp: 1102-1123. https://doi.org/10.1214/09-AOAS249.
[34] J. Angulo, “Structure Tensor Image Filtering using Riemannian L1 and L∞ Center-of-massâ€, Image Analysis and Stereology, Vol. 33, No. 2, (2014), pp: 95-105. https://doi.org/10.5566/ias.v33.p95-105.
[35] V. Toujas, M. Donias, Y. Berthoumieu, “Structure Tensor Field Regularization Based on Geometric Featuresâ€, Proceedings of the 18th European Signal Processing Conference (EUSIPCO), (2010).
[36] P. Fillard, V. Arsigny, N. Ayache, X. Pennec, “A Riemannian framework for the processing of tensor-valued imagesâ€, Fogh Olsen O, Florack L, Kuijper A (eds) Deep Structure, Singularities, and Computer Vision. Lecture Notes in Computer Science, Springer, (2005), pp: 112–123. https://doi.org/10.1007/11577812_10.
[37] V. Kwatra, A. Schödl, I.A. Essa, G. Turk, A.F. Bobick, “Graphcut textures: Image and video synthesis using graph cutsâ€, ACM Transactions on Graphics, Vol. 22, No. 3, (2003), pp: 277-286. https://doi.org/10.1145/882262.882264.
[38] A. Bargteil, F. Sin, J.E. Michaels, T.G. Goktekin, J.F. O’Brien, “A Texture Synthesis Method for Liquid Animationsâ€, Proceedings of the Eurographics Symposium on Computer Animation, ACM, (2006). https://doi.org/10.1145/1179849.1179929.
[39] G. Winkenbach, D.H. Salesin, “Computer-generated pen-and-ink illustrationâ€, Proceedings of the 21st annual conference on Computer graphics and interactive techniques, ACM, (1994). https://doi.org/10.1145/192161.192184.
[40] M. Bertalmio, G. Sapiro, V. Caselles, C. Ballester, “Image inpaintingâ€, Proceedings of the 27th annual conference on Computer graphics and interactive techniques, ACM, (2000).
[41] A. Efros, T. Leung, “Texture synthesis by non-parametric samplingâ€, Proceedings of the 7th International Conference on Computer Vision, (1999). https://doi.org/10.1109/ICCV.1999.790383.
[42] A. Criminisi, P. Pérez, K. Toyama, “Region filling and object removal by exemplar-based image inpaintingâ€, IEEE Trans. on image processing, Vol. 13, No. 9, (2004), pp: 1200-1212. https://doi.org/10.1109/TIP.2004.833105.
[43] J. Aujol, S. Ladjal, S. Masnou, “Exemplar-based inpainting from a variational point of viewâ€, SIAM Journal on Mathematical Analysis, Vol. 42, No. 3, (2009), pp: 1246-85. https://doi.org/10.1137/080743883.
[44] L.Y. Wei, M. Levoy, “Fast texture synthesis using tree-structured vector quantizationâ€, Proceedings of the 27th International Conference on Computer Graphics and Interactive Techniques, ACM, (2000). https://doi.org/10.1145/344779.345009.
[45] ITU-R (2011) Recommendation BT.601-7. Studio encoding parameters of digital television for standard 4:3 and wide screen 16:9 aspect ratios, (2011).
[46] M. Weinberger, G. Seroussi, G. Sapiro, “The LOCO-I lossless image compression algorithm: Principles and standardization into JPEG-LSâ€, IEEE Trans. on Image Processing, Vol. 9, No. 8, (2000), pp: 1309–1324. https://doi.org/10.1109/83.855427.
[47] I.E. Richardson, The H.264 Advanced Video Compression Standard, John Wiley & Sons, (2011).
[48] ITU-T (2000) Recommendation H.262, Information technology – Generic coding of moving pictures and associated audio information: Video, (2000).
[49] ISO (2004) Standard ISO/IEC 14496-2:2004 - Information technology -- Coding of audio-visual objects -- Part 2: Visual, (2004).
[50] ITU-T (2005) Recommendation H.263, Video coding for low bit rate communication, (2005).
[51] ITU-T (2015) Recommendation H.265, International Standard ISO/IEC 23008-2, High Efficiency Video Coding, (2015).
[52] S. Kullback, R.A. Leibler, “On Information and Sufficiency. Annals of Mathematical Statisticâ€, Vol. 22, No. 1, (1951), pp: 79-86. https://doi.org/10.1214/aoms/1177729694.
[53] URL (2018) YUV test sequences. URL http://videocoders.com/yuv.html. Accessed on April 3, 2018.
-
Downloads
-
How to Cite
Akl, A., & Yaacoub, C. (2019). Exploiting tensor-space similarity measures in image and video processing. International Journal of Engineering & Technology, 7(4), 5196-5205. https://doi.org/10.14419/ijet.v7i4.12700Received date: 2018-05-10
Accepted date: 2018-12-03
Published date: 2019-03-22