Lean optimization model for managing the yield of pima cotton (gossipier Barba dense) in small- and medium-sized farms in the Peruvian coast areas
-
2018-08-21 https://doi.org/10.14419/ijet.v7i3.12721 -
Lean Manufacturing, Theory of Constraints, Linear Programming, Crop Yield Measurement -
Abstract
This study proposes a lean manufacturing-based optimization model to standardize “Pima cotton†crop yields in the Peruvian coast areas toward the north of Piura as the study area. The study also discusses how Pima cotton is grown in the Peruvian cost areas. This is represented in 2 stages: diagnosis and development of the cotton crop model. The diagnosis stage consists of 3 steps, and the development stage consists of 2 steps. The interrelation of each stage has been identified with the lean manufacturing principle for the improvement of crop yield. Results showed that to increase current crop yield in Piura to 172 bushels/ha as well as determine the quantities of resources and raw materials required considering a standardized crop production process. The limitations of the research depend on the climatic conditions in Peru. The main contribution of this research is to propose a model using which farmers may produce Pima cotton by utilizing the indicators proposed to increase the process control. In addition, the paper proposes a standardized crop production process that farmers must follow, supported by a mathematical model simulation.
Â
Â
-
References
[1] Abolhassani, A., Jaridi, M., 2016. Productivity enhancement in North American automotive industry: strategies and techniques to reduce hours-per-vehicle. International Journal of Productivity and Performance Management, 65(8), pp. 1112 -1136. https://doi.org/10.1108/IJPPM-08-2015-0117.
[2] Bajjou, M.S., Chafi, A. y En-Nadi, A., 2017. A comparative study between lean construction and the traditional production system. International Journal of Engineering Research in Africa, 29, pp.118 -132. https://doi.org/10.4028/www.scientific.net/JERA.29.118.
[3] Chankov, S., Hutt, M.T. y Bendul, J., 2016. Synchronization in manufacturing systems: quantification and relation to logistics performance. International Journal of Production Research, 54(20), pp. 6033 –6051. https://doi.org/10.1080/00207543.2016.1165876.
[4] Costas, J., De La Fuente, D., Pino, R. y Puche, J., 2015. Applying Goldratt's Theory of Constraints to Reduce the Bullwhip Effect through Agent-Based Modeling. Expert Systems with Applications, 42(4), pp. 2049-2060. https://doi.org/10.1016/j.eswa.2014.10.022.
[5] Filho, T.A.R, Pacheco, D.A.J., Pergher, I., Roehe Vaccaro, G.L. y Antunes, J.A.V., 2016. A new approach for decision making in distribution supply chains: A theory of constraints perspective. International Journal of Logistics Systems and Management, 25(2), pp. 266 – 282. https://doi.org/10.1504/IJLSM.2016.078916.
[6] Garcés, D.A, Castrillón, O.D., 2017. Design of intelligent technology to identify and reduce downtime in a production system. Información Tecnológica, 28(3), pp. 157-170. https://doi.org/10.4067/S0718-07642017000300017.
[7] Golmohammadi, D., 2015. A study of scheduling under the theory of constraints. International Journal of Production Economics, 165(1), art. num. 6034, pp. 38-50.
[8] Gundogar, E., Sari, M. y Kokcam, A.H., 2016. Dynamic bottleneck elimination in mattress manufacturing line using theory of constraints. Springer Plus, 5(1), art. num. 1276. https://doi.org/10.1186/s40064-016-2947-1.
[9] Hilmola, O.P, Gupta, M., 2015. Throughput accounting and performance of a manufacturing company under stochastic demand and scrap rates. Expert Systems with Applications, 42(22), pp. 8423- 8431. https://doi.org/10.1016/j.eswa.2015.06.056.
[10] Horning, E.S., Pérez, D.T., 2016. An ant colony algorithm for scheduling flexible flowshop with sequencedependent setup times and total tardiness minimization. Ingeniare, 24(3), pp. 502-509.
[11] Jasti, N.V.K., Kodali, R., 2016. An empirical study for implementation of lean principles in Indian manufacturing industry. Benchmarking, 23(1), pp. 183-207. https://doi.org/10.1108/BIJ-11-2013-0101.
[12] Khayrullina, M., Kislitsyna,O. y Chuvaev, A., 2015. Production systems continuous improvement modelling. Quality Innovation Prosperity, 19(2), pp. 73-86. https://doi.org/10.12776/qip.v19i2.576.
[13] Lee, W.C., Chung, Y.H. y Wang, J. Y., 2017. A parallel- machine-scheduling problem with two competing agents. Engineering Optimization, 49(6), pp. 962-975. https://doi.org/10.1080/0305215X.2016.1227615.
[14] Lowalekar, H., Ravi, R.R., 2017. Revolutionizing blood bank inventory management using the TOC thinking process: An Indian case study. International Journal of Production Economics, 186(1), pp. 89-122. https://doi.org/10.1016/j.ijpe.2017.02.003.
[15] Nagano, M.S., Da Silva, A.A. Y Nogueira Lorena, L.A., 2014. An evolutionary clustering search for the no-wait flow shop problem with sequence dependent setup times. Expert Systems with Applications, 41(8), pp. 3628-3633. https://doi.org/10.1016/j.eswa.2013.12.013.
[16] Obeidat, M.S., Al-Aomar, R. y Pei, Z.J., 2014. Lean manufacturing implementation in the sewing industry. Journal of Enterprise Transformation, 4(2), pp. 151-171. https://doi.org/10.1080/19488289.2014.890980.
[17] Pérez – Campdesuñer, R., Pérez –Pravia, M., Sánchez-RodrÃguez,A. GarcÃa-Vidal, G. y MartÃnez-Vivar,R., 2017. Application of a methodology based on the theory of constraints in the sector of tourism services. Journal of Industrial Engineering and Management, 10(1), pp. 7-27. https://doi.org/10.3926/jiem.2089.
[18] Puche, J., Ponte, B., Costas, J., Pino, R. y De la fuente, D., 2016. Systemic approach to supply chain management through the viable system model and the theory of constraints. Production Planning and Control, 27(5), pp. 421-430. https://doi.org/10.1080/09537287.2015.1132349.
[19] Pugazhenthi, R., Xavior, M.A., 2014. Minimizing material processing time and idle time of a critical machine in a flow shop. Advanced Materials Research, 984-985, pp. 106-110. https://doi.org/10.4028/www.scientific.net/AMR.984-985.106.
[20] Salazar Hornig, E., Ãvila Thieme, C., 2017. GRASP approach for the unrelated parallel machines scheduling problem with makespan minimization and sequence dependent setup times. Ingeniare, 25(3), pp. 524-534.
[21] Sanjika, T.M., Bezuidenhout, C.N., 2016. A primary influence vertex approach to identify driving factors in complex integrated agri-industrial systems – an example from sugarcance supply and processing Systems. International Journal of Production Research, 54(2), pp. 4506-4519. https://doi.org/10.1080/00207543.2015.1064552.
[22] Soroush, H.M., 2015. Scheduling with job-dependent past-sequence-dependent setup times and job-dependent position-based learning effects on a single processor. European Journal of Industrial Engineering, 9(3), pp. 277-307. https://doi.org/10.1504/EJIE.2015.069341
[23] Tamizharasi, G., Kathiresan, S., 2014. Lean manufacturing in carriage building press shop. World Applied Sciences Journal, 29(10), pp. 1333-1340.
[24] Thurer, M., Qu, T., Stevenson, M., Li, C.D. y Huang, G. Q., 2017. Deconstructing bottleneck shiftiness: the impact of bottleneck position on order release control in pure flow shops. Production Planning and Control, 28(15), pp. 1223-1235. https://doi.org/10.1080/09537287.2017.1362486.
[25] Valencia, J.E., Lamban, M.P.C., Royo, J.A.S., DÃaz, J.A.M. y Canto, J.M., 2014. A software development for establishing optimal production lots and its application in academic and business environments. IngenierÃa e Investigación, 34(3), pp. 81-86. https://doi.org/10.15446/ing.investig.v34n3.41578.
[26] Wang, H., Gong, Q. y Wang, S., 2017. Information processing structures and decision-making delays in MRP and JIT. International Journal of Production Economics, 188(1), pp. 41-49. https://doi.org/10.1016/j.ijpe.2017.03.016.
[27] Şimşit, Z.T., Günay, N.S. y Vayvay, O., 2014. Theory of Constraints: A Literature Review. Procedia – Social and Behavioral Sciences, 150, pp. 930-936. https://doi.org/10.1016/j.sbspro.2014.09.104.
[28] GarcÃa, R. (22 de agosto del 2016). El algodón pima piurano: uno de los productos más olvidados de la región. Walac. Recuperado de http://walac.pe/el-algodon-piurano-es-olvidado-entre-los-agricultores-de-la-region/.
[29] Inga, C. (19 de setiembre del 2016). ¿Puede rescatarse el algodón peruano? El Comercio. Recuperado de https://elcomercio.pe/economia/dia-1/rescatarse-algodon-peruano-260578.
[30] Instituto Nacional de Innovación Agraria - INIA. (2008). TecnologÃa en Algodón. 2018, de Ministerio de Agricultura y Riego Sitio web: http://www.inia.gob.pe/tecnologias/cultivos/132-cat-tecnologias/cultivos/392-tecnologia-en-algodon.
[31] Redacción LR. (27 de octubre del 2017). Dirección de Agricultura pide no sembrar algodón a comienzos del 2018 por plagas. La República. Recuperado de http://larepublica.pe/economia/1136848-direccion-de-agricultura-pide-no-sembrar-algodon-a-comienzos-del-2018-por-plagas.
[32] Bellido, Y., Rosa, A.L., Torres, C., Quispe, G., Raymundo, C., 2018. Modelo de Optimización de Desperdicios Basado en Lean Manufacturing para incrementar la productividad en Micro y Pequeñas Empresas del Rubro Textil (2018) CICIC 2018 - Octava Conferencia Iberoamericana de Complejidad, Informatica y Cibernetica, Memorias, 1, pp. 148-153.
[33] Arévalo, J., Quispe, G., Raymundo, C., 2017. Sustainable Energy Model for the production of biomass briquettes based on rice husk in low-income agricultural areas in Peru. Energy Procedia, 141, pp. 138-145. https://doi.org/10.1016/j.egypro.2017.11.026
-
Downloads
-
How to Cite
Rojas, C., Quispe, G., & Raymundo, C. (2018). Lean optimization model for managing the yield of pima cotton (gossipier Barba dense) in small- and medium-sized farms in the Peruvian coast areas. International Journal of Engineering & Technology, 7(3), 1718-1724. https://doi.org/10.14419/ijet.v7i3.12721Received date: 2018-05-11
Accepted date: 2018-07-18
Published date: 2018-08-21