The walking robots critical position of the kinematics or dynamic systems applied on the environment model

  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract

    The exposure is dedicated in the first to mathematical modeling of the environment where the aspects on the walking robots evolution models are described. The environment’s mathematical model is defined through the models of kinematics or dynamic systems in the general case of systems that depend on parameters. The important property of the dynamic system evolution models that approach the phenomenon from the environment is property of separation between stable and unstable regions from the free parameters domain of the system. Some mathematical conditions that imply the separation of stable regions from the free parameters domain of the system are formulated.  In the second part is described our idea on walking robot kinematics and dynamic models with aspects exemplified on walking robot leg. An inverse method for identification of possible critical positions of the walking robot leg is established.



  • Keywords

    environment’s model, walking robot, kinematics/dynamic model, stability regions

  • References

      [1] Hirsch M W, Smale S, Devaney R L. Differential equations, dynamical systems, and an introduction to chaos, Academic Press, 2004

      [2] Halanay A, Rasvan V. Applications of Liapunov methods in stability, Kluwer Academic Publishers, 1993,

      [3] Teodorescu P P, Stanescu N D, Pandrea N. Numerical analysis with applications in mechanics and engineering, John Wiley & Sons, Hoboken, USA, 2013, doi: 10.102/9781118614563

      [4] Migdalovici M, Baran D. On a stability analysis method of dynamical systems with numerical tests, Proceedings of the Int. Conf. of Diff. Geom. and Dynamical Systems (DGDS-2008), Geometry Balkan Press, 2009, 99–107

      [5] Vladareanu L, Tont G, Ion I, Munteanu M S, Mitroi D. Walking robots dynamic control systems on an uneven terrain, Advances in Electrical and Computer Engineering, 10, 2, 2010, 146–153

      [6] Vladareanu V, Tont G, Vladareanu L, Smarandache F. The navigation of mobile robots in non-stationary and non-structured environments, Int. J. Advanced Mechatronic Sys., 5, 4, 2013, 232–243

      [7] Pop N, Vladareanu L, Popescu I.N, Ghita C, Gal A, Cang S, Yu H, Bratu V, Deng M. A numerical dynamic behaviour model for 3D contact problems with friction, Computational Materials Science, 94, 2014, 285–291

      [8] Migdalovici M, Vladareanu L, Baran D, Vladeanu G. Radulescu M. Stability Analysis of Walking Robot Motion, ICCMIT 2015, Elsevier: doi:10.1016/j.procs.2015.09.117

      [9] Migdalovici M, Baran D, Vladeanu G. Stability control of linear and nonlinear dynamic systems, International Journal of Acoustics and Vibration, 21, 4, 2016, 440–444

      [10] Luige Vladareanu, Octavian Melinte, Adrian Bruja, Shuang Cang , Hongnian Yu, Hongbo Wang, Xiaojie Wang, Zeng-Guang Hou, Xiao-Liang Xie, Haptic interfaces for the rescue walking robots motion in the disaster áreas, 2014 UKACC International Conference on Control (CONTROL 2014), Loughborough, U.K., 9-11 July 2014, pg. 498 - 503, IEEE, doi: 10.1109/CONTROL. 2014.6915189, ISBN 978-1-4799-2518-6

      [11] N Pop, L Vladareanu, IN Popescu, C Ghiţă, A Gal, S Cang, H Yu, V Bratu,M Deng, A numerical dynamic behaviour model for 3D contact problems with friction, Computational Materials Science 94, 2014, 285-291

      [12] Luige Vladareanu, Daniel Mitroi, Radu Ioan Munteanu, Shuang Chang, Hongnian Yu, Hongbo Wang, Victor Vladareanu, Radu Adrian Munteanu. Hou z.g., Octavian Melinte, Radu Adrian Munteanu , Zeng-Guang Hou , Xiaojie Wang , Guibin Bia , Yongfei Feng and Eugen Albu, Improved Performance of Haptic Robot Through the VIPRO Platform, Acta Electrotehnica, vol. 57, 2016, ISSN 2344-5637.

      [13] Pop N., Cioban H., Horvat-Marc A., Finite element method used in contact problems with dry friction, Computational Materials Science, Volume: 50, Issue: 4, 1283-1285, ISSN: 0927-0256 , (2011)

      [14] Yongfei Feng, Hongbo Wang, Tingting Lu, Victor Vladareanu, Qi Li and Chaosheng Zhao. Teaching Training Method of a Lower Limb Rehabilitation Robot. Int J Adv Robot Syst, 2016,

      [15] N. POP, An algorithm for solving nonsmooth variational inequalities arising in frictional quasistatic contact problems, Carpathian Journal of Mathematics, Vol. 24, No. 2, 110-119, ISSN:1584-2851, (2008)

      [16] Vladareanu, V., Schiopu, P., & Deng, M. (2013, September). Robots extension control using fuzzy smoothing. In Advanced Mechatronic Systems (ICAMechS), 2013 International Conference on (pp. 511-516). IEEE.

      [17] Ionel Alexandru Gal, Vladareanu L, Hongnian Yu, Hongbo Wang, Mingcong Deng, „Advanced intelligent walking robot control through sliding motion control and bond graphs methods”, Advanced Mechatronic Systems (ICAMechS), 2015 International Conference on, 22-24 Aug. 2015, Beijing, China,, pg. 36 – 41, DOI: 10.1109/ICAMechS.2015.7287125, INSPEC Accession Number: 15489961, Publisher: IEEE.

      [18] Ionel Alexandru Gal, Luige Vladareanu, Radu I Munteanu, Sliding Motion Control With Bond Graph Modeling Applied on a Robot Leg, Revue Roumaine Des Sciences Techniques-Serie Electrotechnique Et Energetique, Vol 60, Nr.2, pp 215-224, Ed. Romanian Academy, 2015, ISSN: 0035-4066.

      [19] Victor Vladareanua, Radu I. Munteanub, Ali Mumtazc, Florentin Smarandachedand Luige Vladareanua *, “The optimization of intelligent control interfaces using Versatile Intelligent Portable Robot Platform”, Procedia Computer Science 65 (2015): 225 – 232, ELSEVIER,, doi:10.1016 /j.procs.2015.09.115.

      [20] Melinte Octavian, Luige Vladareanu, Radu A. Munteanu, and Hongnian Yu. "Haptic Interfaces for Compensating Dynamics of Rescue Walking Robots", Procedia Computer Science 65 (2015): 218-224. ELSEVIER,, doi:10.1016/j.procs.2015.09.11




Article ID: 12896
DOI: 10.14419/ijet.v7i2.28.12896

Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.