Spatial and temporal clustering analysis on chlorophyll-a data distribution

  • Authors

    • Devi Fitrianah Universitas Mercu Buana
    2018-08-23
    https://doi.org/10.14419/ijet.v7i2.27.13082
  • Distribution of Chlorophyll-A, DBSCAN, Fuzzy C Means, Potential Fishing Zones, Spatio-Temporal Clustering.
  • Abstract

    The motivation of this study is to serve as an alternative approach to most chlorophyll analysis studies that utilize overlay analysis with chlorophyll-a imaging. Mostly, the chlorophyll overlay analysis take many steps in processes, not to mention the bigger the observation duration for the data, the longer it takes to process. In this study, a spatial and temporal clustering analysis was conducted to obtain areas that have abundant chlorophyll-a. The spatial distribution was determined using the DBSCAN algorithm, while the temporal distribution was deter-mined via the fuzzy c-means algorithm. From this study, we can obtain information on the distribution of chlorophyll-a clearly based on the location and the time through a given visualization in advanced. There is no need to do overlaying chlorophyll-a imaging one by one. The results of the spatial and temporal clustering provide an easy-to-read visualization regarding information on the chlorophyll-a distribution based on location and time.

     

     

  • References

    1. [1] T. Iida and S.-I. Saitoh, “Temporal and spatial variability of chlorophyll concentrations in the Bering Sea using empirical orthogonal function (EOF) analysis of remote sensing data,†Deep Sea Res. Part II Top. Stud. Oceanogr, vol. 54, no. 23–26, pp. 2657–2671, Nov. 2007. https://doi.org/10.1016/j.dsr2.2007.07.031.

      [2] L. B. & A. R. M. Salleh T. Daqamseha, Shattri Mansora, Biswajeet Pradhanab*, “Potential fish habitat mapping using MODIS-derived sea surface salinity, temperature and chlorophyll-a data: South China Sea Coastal areas, Malaysia,†Geocarto Int. Taylor Fr., vol. 28, no. 6, pp. 546–560, 2013.

      [3] A. J. Irwin and Z. V. Finkel, “Mining a sea of data: Deducing the environmental controls of ocean chlorophyll,†PLoS One, vol. 3, no. 11, pp. 1–8, 2008. https://doi.org/10.1371/journal.pone.0003836.

      [4] R. D. Susanto and J. Marra, “Chlorophyll a Variability Along the Southern Coasts of Java and Sumatra,†Int. J. Oceaography Soc., vol. 18, no. 4, pp. 124–127, 2005.

      [5] J. Gaol, K. Mahapatra, and Y. Okada, “Fish Catch Relative to Environmental Parameters Observed from Satellite during ENSO and Dipole Mode Events 1997/98 in the South Java Sea,†in PORSEC 2002, 2002, pp. 407–413.

      [6] D. Fitrianah, A. N. Hidayanto, J. L. Gaol, and A. M. Arymurthy, “A Spatio-Temporal Data Mining Approach for Identification of Potential Fishing Zones Based on Oceanographic Characteristics in,†IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 9, no. 8, pp. 3720–3728, 2016. https://doi.org/10.1109/JSTARS.2015.2492982.

      [7] M. S. & C. S. K. Adem Ali, Joseph Ortiz, Nicholas Bonini, “Application of Aqua MODIS sensor data for estimating chlorophyll a in the turbid Case 2 waters of Lake Erie using bio-optical models,†GIScience Remote Sens., vol. 53, no. 4, pp. 483–505, 2016. https://doi.org/10.1080/15481603.2016.1177248.

      [8] S. M. Milenković, J. B. Zvezdanović, T. D. Andelković, and D. Z. Marković, “The identification of chlorophyll and its derivatives in the pigment mixtures: HPLC-chromatography, visible and mass spectroscopy studies,†Adv. Technol., vol. 1, no. 1, pp. 16–24, 2012.

      [9] J. Gehrke, D. Gunopulos, H. Road, and S. Jose, “Automatic Subspace Clustering of High Dimensional Data for Data Mining Applications Rakesh Agrawal.â€

      [10] V. No, J. Song, J. Song, K. Kim, M. Lee, and A. Rule, “A Big Data Analysis and Mining Approach for IoT Big Data,†Int. J. Adv. Comput. Sci. Technol., vol. 7, no. 1, pp. 3–5, 2018.

      [11] F. Su, C. Zhou, V. Lyne, Y. Du, and W. Shi, “A data-mining approach to determine the spatio-temporal relationship between environmental factors and fish distribution,†Ecol. Modell., vol. 174, no. 4, pp. 421–431, Jun. 2004. https://doi.org/10.1016/j.ecolmodel.2003.10.006.

      [12] D. Fitrianah, N. H. Praptono, A. N. Hidayanto, and A. M. Arymurthy, “Feature Exploration for Prediction of Potential Tuna Fishing Zones,†Int. J. Inf. Electron. Eng., vol. 5, no. 4, pp. 270–274, 2015.

      [13] A. N. Hidayanto, “Oceanographic Features Selection to Predict the Tuna Potential Fishing Zones Using SFFS Method,†vol. x, no. xx, 2015.

      [14] M. Zainuddin, K. Saitoh, and M. Saitoh, “Albacore (Thunnus alalunga) fishing ground in relation to oceanographic conditions in western North pacific Ocean using remotely sensed satellite data,†J. Fish. Oceanogr, vol. 12, no. 2, 2006.

      [15] M. Sadly, N. Hendiarti, S. I. Sachoemar, and Y. Faisal, “Fishing ground prediction using a knowledge-based expert system geographical information system model in the South and Central Sulawesi coastal waters of Indonesia,†Int. J. Remote Sens., vol. 30, no. 24, pp. 6429–6440, 2009. https://doi.org/10.1080/01431160902865780.

      [16] K.-R. J. & T. J. Ni-Bin Chang , Y. Jeffrey Yang , Ammarin Daranpob, “Spatiotemporal pattern validation of chlorophyll-a concentrations in Lake Okeechobee, Florida, using a comparative MODIS image mining approach,†Int. J. Remote Sens., vol. 33, no. 7, pp. 2233–2260, 2012. https://doi.org/10.1080/01431161.2011.608089.

      [17] D. Fitrianah, A. N. Hidayanto, H. Fahmi, J. Lumban Gaol, and A. M. Arymurthy, “ST-AGRID: A spatio temporal grid density based clustering and its application for determining the potential fishing zones,†Int. J. Softw. Eng. its Appl., vol. 9, no. 1, 2015.

      [18] Ep. E.P. and S. R, “Big data management with machine learning inscribed by domain knowledge for health care,†Int. J. Eng. Technol., vol. 6, no. 4, p. 98, 2017. https://doi.org/10.14419/ijet.v6i4.8214.

      [19] B. Werdell, A. Franz; S. W. Bailey; N. Kuring; and P. Jeremy, “Ocean color measurements with the Operational Land Imager on Landsat-8: implementation and evaluation in SeaDAS,†J. Appl. Remote Sens., vol. 9, no. 1, 2015.

      [20] M. Ester, H. Kriegel, and J. Sander, “Algorithms and Applications for Spatial Data Mining,†pp. 1–32, 2001.

      [21] H. Wang, Y. Wang, and S. Wan, “A Density-Based Clustering Algorithm for Uncertain Data,†2012 Int. Conf. Comput. Sci. Electron. Eng., pp. 102–105, Mar. 2012. https://doi.org/10.1109/ICCSEE.2012.91.

      [22] H. Jiang, J. Li, S. Yi, X. Wang, and X. Hu, “A new hybrid method based on partitioning-based DBSCAN and ant clustering,†Expert Syst. Appl., vol. 38, no. 8, pp. 9373–9381, Aug. 2011. https://doi.org/10.1016/j.eswa.2011.01.135.

      [23] T.-J. Keh-ShihChuang, Hong-LongTzeng, Sharon Chen, JayWua, “Fuzzy c-means clustering with spatial information for image segmentation,†Comput. Med. Imaging Graph. vol. 30, no. 1, pp. 9–15, 2006. https://doi.org/10.1016/j.compmedimag.2005.10.001.

      [24] D. Kurniasih, K. A. Jasmi, B. Basiron, M. Huda, and A. Maseleno, “The uses of fuzzy logic method for finding agriculture and livestock value of potential village,†International Journal of Engineering and Technology(UAE), vol. 7, no. 3, pp. 1091–1095, 2018.

      [25] X. Leng and X. Li, “Alarm fuzzy association rules parallel mining in multi-domain distributed communication network,†Int. Conf. Commun. Technol. Proceedings, ICCT, no. 61171090, pp. 501–506, 2012.

  • Downloads

  • How to Cite

    Fitrianah, D. (2018). Spatial and temporal clustering analysis on chlorophyll-a data distribution. International Journal of Engineering & Technology, 7(2.27), 261-265. https://doi.org/10.14419/ijet.v7i2.27.13082

    Received date: 2018-05-20

    Accepted date: 2018-06-30

    Published date: 2018-08-23