Simulation, design of unequal five way wilkinson power divider for EW applications

  • Authors

    • M Siva Charan Velagapudi Ramakrishna Engineering college
    • Praveen Vummadisetty. Naidu Velagapudi Ramakrishna Engineering college
    • A Rajasekhar Velagapudi Ramakrishna Engineering college
    • Gaurav Bansod PICT, Pune-411043
    • P Raveendra Velagapudi Ramakrishna Engineering college
    • Arvind Kumar KITE, Jaipur-302022, India
    2018-06-23
    https://doi.org/10.14419/ijet.v7i3.13155
  • Wilkinson Power Divider, Micro Strip, ADS, FR-4.
  • Abstract

    This paper deals with the design and simulation of unequal 5-way Wilkinson power divider used for Electronic Warfare (EW) applications. The frequency range of operation intended for this design is 6 GHz to 18 GHz. The proposed Wilkinson power divider is designed on a low cost FR-4 substrate having height of 1.5mm, relative permittivity of 4.4 and loss tangent of 0.02. The design occupies a size of 11mm x 33 mm x 1. 5 mm. Equal split Wilkinson power dividers are utilized for implementation of this design. High isolation has been obtained throughout the frequency range of 6 GHz to 18 GHz. The design procedure is discussed. The simulated results are presented by using ADS simulation software.

     

     


     

  • References

    1. [1] Wilkinson, E. J. (1960). “An N-way hybrid power divider.†IRE Transactions on Microwave Theory and Techniques, 8(1), 116-118. https://doi.org/10.1109/TMTT.1960.1124668.

      [2] L. I. Parad and R. L. Moynihan, “Split-tee power divider,†IEEE Trans. Microwave Theory and Techniques, vol. MTT-13, pp. 91-95, January 1965. https://doi.org/10.1109/TMTT.1965.1125934.

      [3] S.B. Cohn, “A class of broadband three-port TEM-mode hybrids, “IRE Trans. Microwave Theory Tech., vol. MTT-16, no.2,pp. 110-116. Feb1968. https://doi.org/10.1109/TMTT.1968.1126617.

      [4] DimitriosAntsos, Rick Crist and Lin Sukamto. “A Novel Wilkinson Power Divider with Predictable Performance At K And Ka-Bandâ€. IEEE Conference 2002.

      [5] Maktoomi, M. A., Hashmi, M. S., &Ghannouchi, F. M. (2016). Theory and Design of a Novel Wideband DC Isolated Wilkinson Power Divider. IEEE Microwave and Wireless Components Letters, 26(8), 586-588. https://doi.org/10.1109/LMWC.2016.2585572.

      [6] L. Wu, Z. Sun, H. Yilmaz, and M. Berroth, ``A dual-frequency Wilkinsonpower divider,'' IEEE Trans. Microw. Theory Techn., vol. 54, no. 1, pp. 278284, Jan. 2006.

      [7] X. Wang, I. Sakagami, K. Takahashi, and S. Okamura, ``A generalized dual-band Wilkinson power divider with parallel L, C, and R components,''IEEE Trans. Microw. Theory Techn., vol. 60, no. 4, pp. 952964, Apr. 2012. https://doi.org/10.1109/TMTT.2012.2184298.

      [8] X. Wang, I. Sakagami, Z. Ma, A. Mase, M. Yoshikawa, and M. Ichimura,``Miniaturized dual-bandWilkinson power divider with self-compensationstructure,'' IEEE Trans. Compon., Packag., Manuf. Technol., vol. 5, no. 3, pp. 389397, Mar. 2015.

      [9] P. V. Naidu, V. Ravi and A. Kumar, "A novel compact unequal wideband Wilkinson power divider for UWB and EW applications," 2017 Progress in Electromagnetics Research Symposium - Fall (PIERS - FALL), Singapore, 2017, pp. 737-742. https://doi.org/10.1109/piers-fall.2017.8293232

      [10] Vummadisetty, P. N., & Kumar, A. “Compact Uniplanar Multi Feed Multi Band ACS Monopole Antenna Loaded With Multiple Radiating Branches for Portable Wireless Devicesâ€. Advanced Electromagnetics, Vol. 7, No.2, (2018), pp.68-75. https://doi.org/10.7716/aem.v7i2.661

      [11] Naidu, P. V., & Kumar, A. “ACS-fed e-shaped dual band un-iplanar printed antenna for modern wireless communication applicationsâ€. Radioelectronics and Communications Systems, Vol. 61, (2018), pp. 87-93. https://doi.org/10.3103/S0735272718030019

      [12] Naidu, P. V., Kumar, A., & Kumar, V. “Uniplanar Y and L shaped ACS fed multiband and wideband compact printed antenna for advanced wireless communication systemsâ€. Microsystem Technologies, Vol. 24, No.4, (2018), pp.2051-2061. https://doi.org/10.1007/s00542-017-3606-3.

      [13] Vummadisetty, P. N., & Kumar, A. “Multi feed multi band uniplanar ACS fed antenna with N shape and inverted L shape radiating branches for wireless applicationsâ€. Microsystem Technologies, Vol. 24, No.4, (2018), pp.1863-1873. https://doi.org/10.1007/s00542-017-3565-8.

      [14] Kumar, A., Naidu, P. V., & Kumar, V. “A compact uniplanar ACS fed multi band low cost printed antenna for modern 2.4/3.5/5 GHz applicationsâ€. Microsystem Technologies, Vol. 24, No.3, (2018), pp. 1413-1422. https://doi.org/10.1007/s00542-017-3556-9.

      [15] Naidu, P. V., Kumar, A., & Rajkumar, R. “Design, analysis and fabrication of compact dual band uniplanar meandered ACS fed antenna for 2.5/5 GHz applicationsâ€. Microsystem Technologies, pp.1-8. (2018). https://doi.org/10.1007/s00542-018-3937-8.

      [16] Kumar, A., Naidu, P. V., Kumar, V., & Ramasamy, A. K. “Design & Development of compact uniplanar semi-hexagonal ACS fed multi-band antenna for portable system applicationâ€. Progress in Electromagnetics Research, Vol. 60, (2017), pp.157-167. https://doi.org/10.2528/PIERM17080302.

      [17] Naidu, P. V., & Kumar, A. “Design and development of triple band ACS fed antenna with M and rectangular shaped radiating branches for 2.45/5 GHz wireless applicationsâ€. Microsystem Technologies, Vol. 23, No.12, (2017), pp.5841-5848. https://doi.org/10.1007/s00542-017-3430-9.

      [18] Colin, J-M. "Phased array radars in France: Present and future." Phased Array Systems and Technology, 1996. IEEE International Symposium on. IEEE, 1996.

      [19] Chou, Hsi-Tseng, and Hao-Ju Huang. "Multilevel Subarray Modularization to Construct Hierarchical Beamforming Networks for Phased Array of Antennas with Low Complexity." IEEE Transactions on Antennas and Propagation 65.11 (2017): 5819-5828. https://doi.org/10.1109/TAP.2017.2751657.

      [20] Naidu, P. V. “Printed V-shape ACS-fed compact dual band antenna for bluetooth, LTE and WLAN/WiMAX applicationsâ€. Microsystem Technologies, Vol. 23, N0.4, (2017), pp.1005-1015. https://doi.org/10.1007/s00542-016-2939-7

      [21] Naidu, P. V., & Kumar, A. “A novel ACS fed multi band antenna loaded with mirrored S and L shaped strips for advanced portable wireless communication applicationsâ€. Microsystem Technologies, Vol. 23, No.10, (2017), pp. 4775-4783. https://doi.org/10.1007/s00542-017-3313-0.

      [22] Naidu, P. V., & Malhotra, A. “Design & analysis of miniaturized asymmetric coplanar strip fed antenna for multi-band WLAN/WiMAX applicationsâ€. Progress in Electromagnetics Research, Vol. 57, (2015), pp. 159-171. https://doi.org/10.2528/PIERC15042302.

      [23] Naidu, P. V., & Kumar, R. “Design of a compact ACS-fed dual band antenna for Bluetooth/WLAN and WiMAX applicationsâ€. Progress in Electromagnetics Research, Vol. 55, (2014), pp. 63-72. https://doi.org/10.2528/PIERC14101803.

      [24] Naidu, P. V. “Design, simulation of a compact triangular shaped dual-band Microstrip antenna for 2.4 GHz bluetooth/WLAN and UWB Applicationsâ€. Wireless Personal Communications, Vol. 95, No.2, (2017), pp.783-794. https://doi.org/10.1007/s11277-016-3798-3.

      [25] Kumar, R., Naidu, V. P., Kamble, V., & Krishna, R. R. “Simulation, design of compact multi-band microstrip slot antennas for WiMAX/WLAN and UWB applicationsâ€. Wireless Personal Communications, Vol. 80, No.3, (2015), pp. 1175-1192. https://doi.org/10.1007/s11277-014-2079-2.

      [26] Naidu, P. V., & Kumar, R. “A Compact Dual-Band Octagonal Slotted Printed Monopole Antenna for WLAN/ WiMAX and UWB Applicationsâ€. Journal of Microwaves, Optoelectronics and Electromagnetic Applications, (2015), 14(1), 1–13. https://doi.org/10.1590/2179-10742015v14i1422.

      [27] Kumar, R., Naidu, P. V., &Kamble, V. “Design of Asymmetric Slot Antenna with Meandered Narrow Rectangular Slit for Dual Band Applicationsâ€. Progress in Electromagnetics Research B, (2014), 60, 111–123. https://doi.org/10.2528/PIERB14042205.

      [28] Naidu, P. V., Kumar, A., & Kumar, V. “A miniaturized triple band ACS-fed monopole printed antenna with meandered and circular ring shape resonators for WLAN/WiMAX applicationsâ€.2017 Progress in Electromagnetics Research Symposium Fall (PIERS - FALL), pp. 1933-1937. https://doi.org/10.1109/PIERS-FALL.2017.8293454.

      [29] Naidu, P. V., Kumar, A., & Kumar, V. “A very small wideband asymmetric coplanar strip fed printed dual band antenna for advanced communication applicationsâ€.2017 Progress in Electromagnetics Research Symposium Fall (PIERS - FALL), pp. 1928-1932. https://doi.org/10.1109/PIERS-FALL.2017.8293453.

      [30] Naidu, P. V., & Kumar, A. “ACS-fed multiband antenna loaded with staircase radiating strips for wireless communication systemsâ€.2017 Progress in Electromagnetics Research Symposium Fall (PIERS - FALL), pp. 26-30. https://doi.org/10.1109/PIERS-FALL.2017.8293105.

      [31] Naidu, P. V., Kumar, A., & Kumar, V. (2017). “Simulation of meandered uniplanar printed antenna for multiband applicationsâ€.2017 Progress in Electromagnetics Research Symposium - fall (PIERS - FALL), pp. 1938-1941. https://doi.org/10.1109/PIERS-FALL.2017.8293455.

      [32] Kumar, A., Naidu, P. V., & Kumar, V. (2017). “A novel rhombus shaped ACS fed multi band antenna loaded with meander branches for advanced communication applications†2017 Progress in Electromagnetics Research Symposium - fall (PIERS - FALL), pp. 724-730. https://doi.org/10.1109/PIERS-FALL.2017.8293230.

      [33] Kumar, A., & Naidu, P. V. (2016) “A compact O-shaped printed ACS fed monopole dual-band antenna for 2.4GHz Bluetooth and 5GHz WLAN/WiMAX applicationsâ€. 2016 Progress in Electromagnetic Research Symposium (PIERS), pp. 2004-2008. https://doi.org/10.1109/PIERS.2016.7734856.

      [34] Kumar, A., & Naidu, P. V. (2016). “A novel compact printed ACS fed dual-band antenna for Bluetooth/WLAN/WiMAX applicationsâ€. 2016 Progress in Electromagnetic Research Symposium (PIERS), pp. 2000-2003. https://doi.org/10.1109/PIERS.2016.7734855.

      [35] Naidu, P. V., &Malhotra, A. “A small ACS-fed tri-band antenna employing C and L shaped radiating branches for LTE/WLAN/WiMAX/ITU wireless communication applications. Analog Integrated Circuits and Signal Processing, (2015), 85(3), 489–496. https://doi.org/10.1007/s10470-015-0637-5.

      [36] Naidu, P. V., & Kumar, R. “A very small asymmetric coplanar strip fed multi-band antenna for wireless communication applicationsâ€. Microsystem Technologies, (2015), 22(9), 2193–2200. https://doi.org/10.1007/s00542-015-2613-5.

      [37] Naidu, P. V., Malhotra, A., & Kumar, R. “A compact ACS-fed dual-band monopole antenna for LTE, WLAN/WiMAX and public safety applicationsâ€. Microsystem Technologies, (2015), 22(5), 1021–1028. Doi: 10.1007/s00542-015-2562-z. https://doi.org/10.1007/s00542-015-2562-z.

      [38] Kumar, R., Naidu V, P., &Kamble, V. “A compact asymmetric slot dual band antenna fed by CPW for PCS and UWB applicationsâ€. International Journal of RF and Microwave Computer-Aided Engineering, (2014), 25(3), 243–254. doi:10.1002/mmce.20855. https://doi.org/10.1002/mmce.20855.

      [39] Vummadisetty, P. N., & Kumar, R. (2016). “Design of compact octagonal slotted hexagonal and rectangular shaped monopole antennas for dual/UWB applicationsâ€. Turkish Journal of Electrical Engineering & Computer Sciences, 24, 2806–2824. https://doi.org/10.3906/elk-1404-174.

      [40] Naidu, V. P., & Kumar, R. (2014). Design of Compact Dual-Band/Tri-Band CPW-Fed Monopole Antennas for WLAN/WiMAX Applications. Wireless Personal Communications, 82(1), 267–282. https://doi.org/10.1007/s11277-014-2207-z.

      [41] Naidu, P. V., & Kumar, R. “Design of Cpw-Fed Dual-Band Printed Monopole Antennas for Lte/Wimax/Wlan and Uwb Applicationsâ€. Progress in Electromagnetics Research C, (2014), 54, 103–116. https://doi.org/10.2528/PIERC14071006.

  • Downloads

  • How to Cite

    Siva Charan, M., Vummadisetty. Naidu, P., Rajasekhar, A., Bansod, G., Raveendra, P., & Kumar, A. (2018). Simulation, design of unequal five way wilkinson power divider for EW applications. International Journal of Engineering & Technology, 7(3), 1059-1062. https://doi.org/10.14419/ijet.v7i3.13155

    Received date: 2018-05-22

    Accepted date: 2018-06-09

    Published date: 2018-06-23