Investigation of corrosion damage of hydration aluminium alloys at full-scale accelerated tests

  • Authors

    • Anatoly Laptev
    • Maria Kurs
    • Natalya Lonskaya
    • Dmitry Davydov
    • Alena Averina
    2019-03-12
    https://doi.org/10.14419/ijet.v7i4.13244
  • Corrosion, Aluminum Alloys, Full-Scale Accelerated Tests.
  • Abstract

    The results of the study of hydrogen penetration in corrosion of aluminum alloys of eight alloying systems are presented. Tests were carried out for four years with additional irrigation with chloride solutions in a moderately warm climate. It is shown that intensive hydrogenation of the alloy occurs during corrosion. The amount of hydrogen in the alloy is determined by the type of corrosion - with intercrystalline corrosion, hydrogen penetration is more intense than with pitting and delaminating corrosion. The mechanism of hydrogenation of alloys is proposed. The change in the energy of the aluminum crystal in the occlusion of atomic hydrogen and the formation of hydrogen molecules is determined by quantum chemical calculations. The relationship between the plasticity of the tested alloys of aluminum alloys and the intensity of hydrogen saturation is shown.

     

     

  • References

    1. [1] Kablov E.N., Starcev O.V., Medvedev I.M. Obzor zarubezhnogo opyta issledovanij korrozii i sredstv zashchity ot korrozii //Aviacionnye materialy i tekhnologii. 2015. №2. S. 76–87.

      [2] Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tekhnologij ih pererabotki na period do 2030 goda» //Aviacionnye materialy i tekhnologii. 2015. №1 (34). S. 3–33.

      [3] ZHilikov V.P., Karimova S.A., Leshko S.S., CHesnokov D.V. Issledovanie dinamiki korrozii alyuminievyh splavov pri ispytanii v kamere solevogo tumana (KST) //Aviacionnye materialy i tekhnologii. 2012. №4. S. 18–22.

      [4] Panchenko YU.M., Strekalov P.V., CHesnokov D.V., ZHirnov A.D., ZHilikov V.P., Karimova S.A., Tararaeva T.I. Zavisimost' korrozionnoj stojkosti splava D16 ot zasolennosti i meteoparametrov primorskoj atmosfery //Aviacionnye materialy i tekhnologii. 2010. №3. S. 8–13.

      [5] Semenychev V.V. Korrozionnaya stojkost' listov splava D16ch.-T v morskih subtropikah //Trudy VIAM. 2014. â„–7. St. 08 (viam-works.ru).

      [6] Kurs M.G., Karimova S.A. Naturno-uskorennye ispytaniya: osobennosti metodiki i sposoby ocenki korrozionnyh harakteristik alyuminievyh splavov //Aviacionnye materialy i tekhnologii. 2014. №1. S. 51–57

      [7] Fomina M.A., Karimova C.A. Analis korrozionnogo sostoyaniya materialov planera samoletov tipa «Su» posle dlitel'nih srokov expluatacii //Korrozia: materiali, zashita. 2014. № 9. P. 20-24.

      [8] ASTM G47-98. Test Method for Determining Susceptibility to Stress-Corrosion Cracking of High-Strength Aluminum Alloy Products.

      [9] Stepanov A.V. Osnovy prakticheskoj prochnosti kristallov. M., Nauka, 1974, 132 s. 444.

      [10] Ivanova B.C., Gordienko L.K., Geminov V.N. i dr. Rol' dislokacii v uprochnenii i razrushenii metallov. M.: “Naukaâ€, 1965. 180 s.

      [11] Trefilov V.I. Moiseev V.F., Pechkovskij EH.P. i dr. Deforma-cionnoe uprochnenie i razrushenie polikristallicheskih metallov // Kiev: Nauk, dumka, 1987. 245 s.

      [12] Fizicheskoe metallovedenie. T. 3. Fiziko-mekhanicheskie svoj-stva metallov i splavov (pod red. R.U. Kana i P. Haazena, per. s agl.). M.: Metallurgiya, 1987. 662 s.

      [13] Smirnov B.I. EHvolyuciya dislokacionnoj struktury i stadij-nost' krivyh uprochneniya kristallov. Izvestiya AN SSSR. Ser. fiz., 1973. 37. â„– 11. S. 2427-2432.

      [14] Rybakova L.M. Mekhanicheskie zakonomernosti destrukcii me¬talla pri ob"emnom i poverhnostnom plasticheskom Problemy mashinostroeniya i nadezhnosti mashin. 1998. №5. S. 113-123.

      [15] Panin V.E. Osnovy fizicheskoj mezomekhaniki// Fizicheskaya mezomekhanika, â„– 1, 1998. S. 5-22.

      [16] Terent'ev V.F. Ustalost' metallicheskih materialov. M.: Nau-ka. 2003. 254 s.

      [17] Ivanova B.C., Terent'ev V.F., Pojda V.G. Obshchnost' prirody predela ustalosti i fizicheskogo predela tekuchesti // Ustalost' metallov i splavov. 1971. S. 15-23. Epprecht W. Rissbildung in kristallinen Werkstoffen//Schweizerische Bauzeitung. - 91. Jahrgang Heft 48. 29. November 1973. S. 1175-1180.

      [18] Spath H. Einfluss von Wasserstoff auf die Zahigkeit und Risswachstum / Werkstoffkunde Eisen und Stahl. Teil I: Grundlagen der Festigkeit, der Zahigkeit und des Buchs - Band 2. Verlag Stahleisen mbH, Dusseldorf, 1983. S. 648-690

      [19] Chang Ð.С., Grant N.J. Trans, AIME, 1956. Vol. 206. P. 544.

      [20] Zenji A., Koji Т., Norihiko N. The Influence of Surface Roughness on the Fatigue Strength of Carbon Steel at Elevated and Room Temperatures //J. Soc. Mater. Sci., Jap., A., 1974. 23. № 252. P. 771-776.

      [21] Takase Т., Setoguchi K., Wakahara T. Effect of Surface Roughness on Fatigue Strength of 0,25% С Annealed Steel and Policarbonate // Trans. Jap. Soc. Mech. Eng. A., 1998. 64. № 622. P. 1463-1467.

      [22] Sinyavskij, V. S. Korroziya i zashchita alyuminievyh splavov. / V.S. Sinyavskij, V.D. Val'kov, G.M. Budov. - M.: Metallurgiya, 1979. - 224 s.: il.; 22 sm. - Bibliogr.: s. 218-221 (133 nazv.).).

      [23] J. Gilbert Kaufman, Elwin L. Rooy. Aluminum Alloy Castings Properties, Processes, and Applications. 2004 Materials Park, OH 44073-0002. 314 р.

      [24] Laptev A.B. Ingibitory na osnove acetalej i ih proizvodnyh dlya zashchity stalej ot korrozionno-mekhanicheskogo razrusheniya. Avtoreferat dissertacii na soiskanie uchenoj stepeni kandidata tekhnicheskih nauk. Ufa. 1995.

      [25] Laptev A.B., Bugaj D.E., Musavirov R.S., Zlotskij S.S., Rahmankulov D.L. Ocenka ingibiruyushchej sposobnosti organicheskih soedinenij po kvantovohimicheskim parametram molekul. Tez. dokl. simpoziuma po organicheskoj himii «Peterburgskie vstrechi – 95» - 21-24 maya 1995g. ZHurnal organicheskoj himii. –1995. – S. 22.

      [26] Laptev A.B., Emel'yanov A.V., Bugaj D.E. Vliyanie kvantovo-himicheskih parametrov molekul azotsoderzhashchih soedinenij na ih ingibiruyushchuyu ehffektivnost'. 3 Kongress neftegazopromyshlennikov Rossii. Sekciya «Problemy nefti i gaza». Ufa, 23-25 maya 2001 g.: Nauchnye trudy, - Ufa: Gosudarstvennoe izd-vo nauchno-tekhnicheskoj literatury, 2001 g. – S. 317-318.

      [27] Laptev A.B., Emel'yanov A.V., Bugaj D.E. Vliyanie znachenij kvantovo-himicheskih parametrov molekul na ingibiruyushchuyu sposobnost' nekotoryh kislorodsoderzhashchih soedinenij. 3 Kongress neftegazopromyshlennikov Rossii. Sekciya «Problemy nefti i gaza». Ufa, 23-25 maya 2001 g.: Nauchnye trudy, - Ufa: Gosudarstvennoe izd-vo nauchno-tekhnicheskoj literatury, 2001 g. – S. 288.

      [28] Borisova T. M., Kastro R. A. Diehlektricheskie svojstva MDP — struktur na osnove oksida alyuminiya // Materialy XII mezhdunarodnoj konferencii «Diehlektriki - 2011». - T. 1. - SPb: iz-vo RGPU im. A. I. Gercena. — 23-26 maya 2011. - S. 356-359.

      [29] Moskvichev V.V., Mahutov N.A. i dr. Treshchinostojkost' i mekhanicheskie svojstva konstrukcionnyh materialov. Monografiya. - Novosibirsk: Nauka, 2002. - 334 s.

      [30] Kablov E.N. Korroziya ili zhizn' //Nauka i zhizn'. 2012. №11. S. 16–21.

  • Downloads

  • How to Cite

    Laptev, A., Kurs, M., Lonskaya, N., Davydov, D., & Averina, A. (2019). Investigation of corrosion damage of hydration aluminium alloys at full-scale accelerated tests. International Journal of Engineering & Technology, 7(4), 5061-5066. https://doi.org/10.14419/ijet.v7i4.13244

    Received date: 2018-06-13

    Accepted date: 2018-08-25

    Published date: 2019-03-12