Radon gas as a constructive element in the chilean pacific coast the case of a manor house in Viña del mar (valparaíso).

 
 
 
  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract


    The presence of radon gas in buildings is an indicator of indoor air quality. The study presented analyses the amount of radon gas in the city of Viña del Mar in the Valparaiso region (Chile), in a manor house that currently serves as the Center of Advanced Studies at the Univer-sidad de Playa Ancha. Radon gas is an element considered highly harmful to people by various scientific agencies in the field of medicine and health, including the World Health Organization (WHO). The main effect of the presence of radon in the human environment is the risk of lung cancer. This radioactive gaseous element is present in almost all construction materials, and in the land where buildings are located. This article provides the measurements made by the Center of Advanced Studies of the Universidad de Playa Ancha and analyses the levels obtained according to their danger to humans. These values have been used as comparisons to analyse the differences in the presence of this gas between the Chilean Pacific coast and Europe. The values have been analysed with respect to the requirements that are currently being implemented.

     

     


  • Keywords


    Radon Gas; Environment; Healthy Architecture; Construction Materials; Chilean Construction

  • References


      [1] United Nations. Scientific Committee on the Effects of Atomic Radiation., Sources and effects of ionizing radiation : United Nations Scientific Committee on the Effects of Atomic Radiation : UNSCEAR 2000 report to the General Assembly, with scientific annexes. United Nations, 2000.

      [2] Consejo de Seguridad Nuclear, Dosis de Radiación. Editor Consejo de Seguridad Nuclear, 2010.

      [3] J. J. J. L. Llerena Cristobo, Medición de la concentración de gas 222Rn en el interior de edificios. USC. Departamento de Física de las Partículas, 2006.

      [4] R. Almar, C. Blenkinsopp, L. P. Almeida, R. Cienfuegos, and P. A. Catalán, “Wave runup video motion detection using the Radon Transform,” Coast. Eng., vol. 130, pp. 46–51, Dec. 2017. https://doi.org/10.1016/j.coastaleng.2017.09.015.

      [5] C. Cigolini, M. Laiolo, D. Coppola, and G. Ulivieri, “Preliminary radon measurements at Villarrica volcano, Chile,” J. South Am. Earth Sci., vol. 46, pp. 1–8, Oct. 2013. https://doi.org/10.1016/j.jsames.2013.04.003.

      [6] C. Rizo Maestre and V. Echarri Iribarren, “The Radon Gas in Underground Buildings in Clay Soils. The Plaza Balmis Shelter as a Paradigm,” Int. J. Environ. Res. Public Health, vol. 15, no. 5, p. 1004, May 2018. https://doi.org/10.3390/ijerph15051004.

      [7] 90/143/EURATOM, “Recomendación de la comisión EURATOM, de 21 de febrero de 1990, relativa a la protección de la población contra los peligros de una exposición al radón en el interior de edificios,” 1990.

      [8] H. Zeeb, F. Shannoun, and W. H. Organization, “WHO handbook on indoor radon: a public health perspective,” 2009.

      [9] J. Martín Matarranz, Concentraciones de Radón en Viviendas Españolas. Editor Consejo de Seguridad Nuclear, 2004.

      [10] Centre Scientifique ET Technique de la Construction, “Le radon dans les habitations.” Environmental Protection Agency. Bélgica, 1999.

      [11] M. Olaya and F. Borja, “El Código Técnico de la Edificación en España (CTE) Medidas correctoras destinadas a frenar la entrada de radón en los edificios . Investigación de campo como experiencia piloto en España,” 2007.


 

View

Download

Article ID: 13261
 
DOI: 10.14419/ijet.v7i3.13261




Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.