Dual-Core Liquid Filled Photonic Crystal Fiber Coupler

  • Authors

    • Md Bellal Hossain
    • Md Mahbub Hossain Associate ProfessorECE Discipline, Khulna University, Khulna-9208Bangladesh
    • Md Ekhlasur Rahaman
    • Md Younus Ali
    • Himadri Shekhar Mondal
    2018-11-12
    https://doi.org/10.14419/ijet.v7i4.13608
  • Birefringence, Coupling length, Confinement loss, Photonic crystal fiber coupler (PCFC), Polarization-insensitivity, Propagation constant.
  • Photonic crystal fiber coupler (PCFC) is one of the remarkable devices that contribute a key responsibility in passive optical networks and enormous optical systems. This paper presents a dual-core liquid filled PCFC with rectangular and hexagonal geometry for analyzing different guiding properties from 1200 to 1800 nm wavelength range by finite difference time domain (FDTD) method with transparent boundary condition (TBC). In the proposed design, the background material (Silica and BK7) and the liquid (water, chloroform, benzene) in the dual-core are varied. Results imply very small confinement loss with low coupling length for wide wavelength range. At 1.55 µm wavelength, hexagonal PCFC (Silica) shows 0.00025, 0.00051, and 0.00095 m coupling length for water, chloroform, and benzene infiltrated dual-core, respectively. As well, the confinement loss of 1.655×10−8, 0.84×10−8, and 0.739×10−8 dB/km and the birefringence of 3.08×10−4, 1.48×10−4, and 0.801×10−4 are obtained in water, chloroform, and benzene filled dual-core, correspondingly. Furthermore, at 1.55 µm wavelength benzene exhibits the maximum polarization-insensitivity for the both the PCFC structures. In addition, the proposed PCFCs demonstrate high coupling coefficient with ultra flattered dispersion for broad wavelength range.

  • References

    1. [1] P. Agarwal, Modeling of elliptical air hole pcf for lower dispersion, Advance in

      Electronic and Electric Engineering 3 (2013) 439–446.


      [2] H. Ademgil, Highly sensitive octagonal photonic crystal fiber based sensor, Optik-International Journal for Light and Electron Optics 125 (20) (2014) 6274–6278.


      [3] F. Begum, Y. Namihira, A. SM, N. Zou, Novel square photonic crystal fibers with ultra-flattened chromatic dispersion and low confinement losses, IEICE transactions on electronics 90 (3) (2007) 607–612.

      [4] F. Begum, Y. Namihira, S. A. Razzak, S. Kaijage, N. H. Hai, T. Kinjo, K. Miyagi, N. Zou, Novel broadband dispersion compensating photonic crystal fibers: Applications in high-speed transmission systems, Optics & Laser Technology 41 (6) (2009) 679–686.


      [5] F. Begum, Y. Namihira, S. A. Razzak, S. Kaijage, N. H. Hai, T. Kinjo, K. Miyagi, N. Zou, Design and analysis of novel highly nonlinear photonic crystal fibers with ultra-flattened chromatic dispersion, Optics communications 282 (7) (2009) 1416–1421.


      [6] J. Joannopoulos, S. Johnson, J. Winn, R. Meade, Photonic crystals: Molding the flow of light 2nd edn princeton univ (2008).


      [7] G. Rajalakshmi, A. Sivanantha Raja, D. Shanmuga Sundar, Design and optimization of two dimensional photonic crystal based optical filter, Journal of Nonlinear Optical Physics & Materials 24 (03) (2015) 1550027.


      [8] P. Narmadhadevi, D. S. Sundar, L. Malathi, Performance analysis of different micro ring resonators based on optical delay lines, International Journal of Computer Applications 67 (13).


      [9] S. Geerthana, A. S. Raja, D. S. Sundar, Design and optimization of photonic crystal fiber with improved optical characteristics, Journal of Nonlinear Optical Physics & Materials 24 (04) (2015) 1550051.


      [10] M. Hasan, M. S. Habib, M. S. Habib, S. A. Razzak, Highly nonlinear and highly birefringent dispersion compensating photonic crystal fiber, Optical Fiber Technology 20 (1) (2014) 32–38.


      [11] J. Knight, T. Birks, P. S. J. Russell, D. Atkin, All-silica single-mode optical fiber with photonic crystal cladding, Optics letters 21 (19) (1996) 1547–1549.


      [12] J. Knight, T. Birks, R. Cregan, P. S. J. Russell, Large mode area photonic crystal fiber, Optics and Photonics News 9 (12) (1998) 34–35.


      [13] B. Bouma, M. Brezinski, J. Fujimoto, G. Tearney, S. Boppart, M. Hee, High-resolution optical coherence tomography imaging using a mode locked ti: Al 2 o 3 laser source, Optics Letters 20 (13) (1995) 1486–1488.


      [14] D. Chen, M.-L. Vincent Tse, H.-Y. Tam, Optical properties of photonic crystal fibers with a fiber core of arrays of sub wavelength circular air holes: Birefringence and dispersion, Progress In Electromagnetic Research 105 (2010) 193–212.


      [15] Y. Sharma, R. Zafar, Ultra flattened dispersion over telecom wavelength in ring based photonic crystal fiber, IOSR Journal of Electronics and Communication Engineering 9 (2014) 11–14.


      [16] Y. Namihira, M. A. Hossain, J. Liu, T. Koga, T. Kinjo, Y. Hirako, F. Begum, S. Kaijage, S. Razzak, S. Nozaki, Dispersion flattened nonlinear square photonic crystal fiber for dental oct.


      [17] H. Ademgil, S. Haxha, Pcf based sensor with high sensitivity, high birefringence and low confinement losses for liquid analyte sensing applications, Sensors 15 (12) (2015) 31833–31842.


      [18] K. R. Priya, A. S. Raja, D. S. Sundar, Design of a dual-core liquid-filled photonic crystal fiber coupler and analysis of its optical characteristics, Journal of Optical Technology 83 (9) (2016) 569–573.


      [19] J. Knight, J. Arriaga, T. Birks, A. Ortigosa-Blanch, W. Wadsworth, P. S. J. Russell, Anomalous dispersion in photonic crystal fiber, IEEE photonics technology letters 12 (7) (2000) 807–809.


      [20] K. P. Hansen, Introduction to nonlinear photonic crystal fibers, Journal of Optical and Fiber Communications Research 2 (3) (2005) 226–254.


      [21] J. M. Dudley, J. R. Taylor, Ten years of nonlinear optics in photonic crystal fibre, Nature Photonics 3 (2) (2009) 85–90.


      [22] B. H. Lee, J. B. Eom, J. Kim, D. S. Moon, U.-C. Paek, G.-H. Yang, Photonic crystal fiber coupler, Optics Letters 27 (10) (2002) 812–814.


      [23] S. Kim, Y. S. Lee, C. G. Lee, Y. Jung, K. Oh, Hybrid square-lattice photonic crystal fiber with broadband single-mode operation, high birefringence, and normal dispersion, Journal of the Optical Society of Korea 19 (5) (2015) 449–455.


      [24] M. S. Islam, B. K. Paul, K. Ahmed, S. Asaduzzaman, M. I. Islam, S. Chowdhury, S. Sen, A. N. Bahar, Liquid-infiltrated photonic crystal fiber for sensing purpose: Design and analysis, Alexandria Engineering Journal.


      [25] F. Koohi-Kamali, M. Ebnali-Heidari, M. K. Moravvej-Farshi, Designing a dual-core photonic crystal fiber coupler by means of micro fluidic infiltration, International Journal of Optics and Photonics 6 (2) (2012) 83–96.


      [26] K. R. Khan, T. X. Wu, Short pulse propagation in wavelength selective index-guided photonic crystal fiber coupler, IEEE Journal of Selected Topics in Quantum Electronics 14 (3) (2008) 752–757.


      [27] S. Lou, Z. Tang, L. Wang, Design and optimization of broadband and polarization-insensitive dual-core photonic crystal fiber coupler, Applied optics 50 (14) (2011) 2016–2023.

      [28] K. Saitoh, M. Koshiba, T. Hasegawa, E. Sasaoka, Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion, Optics Express 11 (8) (2003) 843–852.


      [29] T.-L. Wu, C.-H. Chao, A novel ultraflattened dispersion photonic crystal fiber, IEEE Photonics Technology Letters 17 (1) (2005) 67–69.


      [30] M. Wandel, P. Kristensen, Fiber designs for high figure of merit and high slope dispersion compensating fibers, Journal of Optical and Fiber Communications Reports 3 (1) (2006) 25–60.

  • Downloads

  • How to Cite

    Hossain, M. B., Hossain, M. M., Rahaman, M. E., Ali, M. Y., & Shekhar Mondal, H. (2018). Dual-Core Liquid Filled Photonic Crystal Fiber Coupler. International Journal of Engineering & Technology, 7(4), 5712-5719. https://doi.org/10.14419/ijet.v7i4.13608