Application of finite element analysis on balloon expandable coronary stents: A review

  • Authors

    • Chandrakantha Bekal Manipal Institute of Technology,MANIPALINDIA
    • Dr. Hiroshi Yamada Kyushu Institute of Technology
    • Dr. Ranjan Shetty Manipal Hospitals,bangalore
    • Dr. Satish Shenoy Manipal Institute of Technology,MANIPAL INDIA
    2018-08-01
    https://doi.org/10.14419/ijet.v7i3.13845
  • Coronary Stents, Finite Element Analysis, Balloon Expandable Stents, In-Stent Restenosis, Stenosis.
  • Numerical analysis of complex physical environment continues to be preferred over “build and test†approach in product development process. Finite Element Analysis (FEA) of coronary artery stenting is studied and researched worldwide for many years. Potential of using FEA for mimicking in-vivo is high as experimental test is ruled out for variety of reasons. This review aims at discussing issues and challenges of numerical simulation based on part of available literature on usage of FEA techniques for investigating behavior of balloon expandable (BE) coronary stents inside artery. Literatures of past 16 years of study on the structural analysis is summarized and potential issues for research is discussed. Study tries to investigate deployment characteristics and biomechanical response of artery post stenting and significance of non-physiological conditions induced. Effects of geometrical parameters, simulation strategies are summarized. Study mainly underscores the potential challenges of reliable numerical investigation. Scope of FEA in predicting contributor for in-stent restenosis (ISR), a major drawback of stenting procedure, by correlating the engineering aspect of stent design and its clinical significance supported by clinical trials are highlighted. Study is expected to serve as qualitative assessment for cardiologists to minimize procedural failure and quantitative tool for the designers for stent optimization.

     

     

  • References

    1. [1] C. D. Mathers, T. Boerma, and D. Ma Fat, “Global and regional causes of death,†Br. Med. Bull., vol. 92, no. 1, pp. 7–32, 2009. https://doi.org/10.1093/bmb/ldp028.

      [2] WHO, “Media centre cardiovascular diseases CVDs. Fact sheet No. 317,†World Heal. Organ. pp. 1–5, 2013.

      [3] D. R. Whittaker and M. F. Fillinger, “The Engineering of Endovascular Stent Technology: A Review,†Vasc. Endovascular Surg., vol. 40, no. 2, pp. 85–94, 2006. https://doi.org/10.1177/153857440604000201.

      [4] V. S. Ajay and D. Prabhakaran, “Coronary heart disease in Indians: Implications of the INTERHEART study,†Indian J. Med. Res., vol. 132, no. 11, pp. 561–566, 2010.

      [5] K. B. Seung, “Stents versus Coronary-Artery Bypass Grafting for Left Main Coronary Artery Disease,†N. Engl. J. Med., vol. 358, no. 17, pp. 1781–1792, 2008. https://doi.org/10.1056/NEJMoa0801441.

      [6] S. Ramakrishnan, S. Mishra, R. Chakraborty, K. Sarat Chandra, and H. M. Mardikar, “The report on the Indian coronary intervention data for the year 2011 e National Interventional Council,†Indian Heart J., vol. 65, no. 5, pp. 518–521, 2013. https://doi.org/10.1016/j.ihj.2013.08.009.

      [7] D. Stoeckel, “A Survey of Stent Designs,†Min Invas Ther Allied Technol, vol. 11, no. 4, pp. 137–147, 2002. https://doi.org/10.1080/136457002760273340.

      [8] D. E. Cutlip, M. S. Chauhan, D. S. Baim, K. K. L. Ho, J. J. Popma, J. P. Carrozza, D. J. Cohen, and R. E. Kuntz, “Clinical restenosis after coronary stenting: Perspectives from multicenter clinical trials,†J. Am. Coll. Cardiol., vol. 40, no. 12, pp. 2082–2089, 2002. https://doi.org/10.1016/S0735-1097(02)02597-4.

      [9] A. K. Mitra and D. K. Agrawal, “In stent restenosis: bane of the stent era,†J Clin Pathol 2006 59232–239., vol. 59, pp. 232–239, 2006.

      [10] R. S. Schwartz, K. C. Huber, J. G. Murphy, W. D. Edwards, A. R. Camrud, R. E. Vlietstra, and D. R. Holmes, “Restenosis and the Proportional Neointimal Response to Coronary Artery Injury : Results in a Porcine Model,†J. Am. Coll. Cardiol., vol. 19, no. 2, pp. 267–274, 1992. https://doi.org/10.1016/0735-1097(92)90476-4

      [11] K. C. Koskinas, Y. S. Chatzizisis, A. P. Antoniadis, and G. D. Giannoglou, “Role of Endothelial Shear Stress in Stent Restenosis and Thrombosis Pathophysiologic Mechanisms and Implications for Clinical Translation,†JAC, vol. 59, no. 15, pp. 1337–1349, 2012.

      [12] M. Early, “The role of vessel geometry and material properties on the mechanics of stenting in the coronary and peripheral arteries.†Proc. Inst. Mech. Eng. H., vol. 224, no. 3, pp. 465–476, 2010. https://doi.org/10.1243/09544119JEIM695.

      [13] L. H. Timmins, “Stented artery biomechanics and device design optimization,†Med. Biol. Eng. Comput., vol. 45, no. 5, pp. 505–513, 2007. https://doi.org/10.1007/s11517-007-0180-3.

      [14] S. Tammareddi, “Multiobjective robust optimization of coronary stents,†Mater. Des. vol. 90, pp. 682–692, 2016. https://doi.org/10.1016/j.matdes.2015.10.153.

      [15] S. Pant, “Multiobjective design optimisation of coronary stents,†Biomaterials, vol. 32, no. 31, pp. 7755–7773, 2011. https://doi.org/10.1016/j.biomaterials.2011.07.059.

      [16] F. Auricchio, “Finite-element Analysis of a Stenotic Artery Revascularization through a Stent Insertion,†Comput. Methods Biomech. Biomed. Engin. vol. 4, no. 3, pp. 249–263, 2000. https://doi.org/10.1080/10255840108908007.

      [17] C. Conway, “A Computational Test-Bed to Assess Coronary Stent Implantation Mechanics Using a Population-Specific Approach,†Cardiovasc. Eng. Technol., vol. 3, no. 4, pp. 374–387, 2012. https://doi.org/10.1007/s13239-012-0104-8 ...

      [18] W. Walke, “Experimental and numerical biomechanical analysis of vascular stent,†J. Mater. Process. Technol, vol. 164–165, pp. 1263–1268, 2005. https://doi.org/10.1016/j.jmatprotec.2005.02.204.

      [19] D. M. Martin, “Sequential Structural and Fluid Dynamics Analysis of Balloon-Expandable Coronary Stents: A Multivariable Statistical Analysis,†Cardiovasc. Eng. Technol., vol. 6, no. 3, pp. 314–328, 2015. https://doi.org/10.1007/s13239-015-0219-9.

      [20] M. Azaouzi, “On the numerical investigation of cardiovascular balloon-expandable stent using finite element method,†Comput. Mater. Sci., vol. 79, pp. 326–335, 2013. https://doi.org/10.1016/j.commatsci.2013.05.043.

      [21] D. Martin, “Computational Structural Modelling of Coronary Stent Deployment : A Review,†Comput. Methods Biomech. Biomed. Engin. vol. 14, no. 4, pp. 331–348, 2011. https://doi.org/10.1080/10255841003766845.

      [22] P. A. Z. Zunino and J. O. T. Tambaca, “Integrated Stent Models Based on Dimension Reduction : Review and Future Perspectives,†Ann. Biomed. Eng., vol. 44, no. 2, pp. 604–617, 2016. https://doi.org/10.1007/s10439-015-1459-4.

      [23] S. T. M. Morlacchi and F. R. M. Migliavacca, “Modeling Stented Coronary Arteries : Where we are, Where to Go,†Ann. Biomed. Eng., vol. 41, no. 7, pp. 1428–1444, 2013. https://doi.org/10.1007/s10439-012-0681-6.

      [24] Antoniadis et al, “Biomechanical Modeling to Improve Coronary Artery Bifurcation Stenting,†J A C C C AR DIOVASCU LAR INTERV E NTI O NS, vol. 8, no. 10, pp. 1281 – 1296, 2015. https://doi.org/10.1016/j.jcin.2015.06.015.

      [25] S. Garg and P. W. Serruys, “Coronary stents: Current status,†J. Am. Coll. Cardiol., vol. 56, no. 10 SUPPL., pp. S1–S42, 2010. https://doi.org/10.1016/j.jacc.2010.06.007.

      [26] P. Qi, Y. Yang, F. M. Maitz, and N. Huang, “Current status of research and application in vascular stents,†Chinese Sci. Bull., vol. 58, no. 35, pp. 4362–4370, 2013. https://doi.org/10.1007/s11434-013-6070-1.

      [27] C. Rogers, “Balloon-Artery Interactions During Stent Placement:A Finite Element Analysis Approach to Pressure, Compliance, and Stent Design as Contributors to Vascular Injury,†Circ. Res., vol. 84, pp. 378–383, 1999. https://doi.org/10.1161/01.RES.84.4.378.

      [28] C. Dumoulin and B. Cochelin, “Mechanical behaviour modelling of balloon-expandable stents,†J. Biomech., vol. 33, no. 11, pp. 1461–1470, 2000. https://doi.org/10.1016/S0021-9290(00)00098-1.

      [29] F. Migliavacca, “Mechanical behavior of coronary stents investigated through the finite element method.†J. Biomech., vol. 35, no. 6, pp. 803–811, 2002. https://doi.org/10.1016/S0021-9290(02)00033-7.

      [30] L. Petrini, “Numerical investigation of the intravascular coronary stent flexibility,†J. Biomech., vol. 37, no. 4, pp. 495–501, 2004. https://doi.org/10.1016/j.jbiomech.2003.09.002.

      [31] C. Lally, “Cardiovascular stent design and vessel stresses: A finite element analysis,†J. Biomech., vol. 38, no. 8, pp. 1574–1581, 2005. https://doi.org/10.1016/j.jbiomech.2004.07.022.

      [32] G. A. Holzapfel, “Changes in the Mechanical Environment of Stenotic Arteries during Interaction with Stents: Computational Assessment of Parametric Stent Designs,†J. Biomech. Eng., vol. 127, no. 1, pp. 166–180, 2005. https://doi.org/10.1115/1.1835362.

      [33] J. Bedoya, “Effects of stent design parameters on normal artery wall mechanics.†J. Biomech. Eng., vol. 128, no. 5, pp. 757–765, 2006. https://doi.org/10.1115/1.2246236.

      [34] F. Migliavacca, L. Petrini, V. Montanari, I. Quagliana, F. Auricchio, and G. Dubini, “A predictive study of the mechanical behaviour of coronary stents by computer modelling,†Med. Eng. Phys., vol. 27, no. 1, pp. 13–18, 2005. https://doi.org/10.1016/j.medengphy.2004.08.012.

      [35] D. E. Kiousis, T. C. Gasser, and G. A. Holzapfel, “A numerical model to study the interaction of vascular stents with human atherosclerotic lesions,†Ann. Biomed. Eng., vol. 35, no. 11, pp. 1857–1869, 2007. https://doi.org/10.1007/s10439-007-9357-z.

      [36] X. Shen, “Effects of stent design parameters on radial force of stent,†second Int. Conf. Bioinforma. Biomed. Eng. iCBBE 2008, vol. 1, pp. 1712–1716, 2008. https://doi.org/10.1109/ICBBE.2008.756.

      [37] M. De Beule, “Realistic finite element-based stent design: The impact of balloon folding,†J. Biomech., vol. 41, no. 2, pp. 383–389, 2008. https://doi.org/10.1016/j.jbiomech.2007.08.014.

      [38] O. I. Trial, A. Kastrati, J. Mehilli et al “Intracoronary Stenting and Angiographic Results,Strut Thickness Effect on Restenosis Outcome (ISAR-STEREO) Trial,†World Wide Web Internet Web Inf. Syst., pp. 2816–2821, 2001.

      [39] M. Azaouzi, A. Makradi, and S. Belouettar, “Numerical investigations of the structural behavior of a balloon expandable stent design using finite element method,†Comput. Mater. Sci., vol. 72, pp. 54–61, 2013. https://doi.org/10.1016/j.commatsci.2013.01.031.

      [40] G. Sangiorgi, G. Melzi, P. Agostoni, C. Cola, F. Clementi, P. Romitelli, R. Virmani, and A. Colombo, “Engineering aspects of stents design and their translation into clinical practice,†Ann. Ist. Super. Sanita, vol. 43, no. 1, pp. 89–100, 2007.

      [41] L. H. Timmins, “Increased artery wall stress post-stenting leads to greater intimal thickening.†Lab. Investig., vol. 91, no. 6, pp. 955–67, 2011. https://doi.org/10.1038/labinvest.2011.57.

      [42] J. Bukala, P. Kwiatkowski, and J. Malachowski, “Numerical analysis of stent expansion process in coronary artery stenosis with the use of non-compliant balloon,†Biocybern. Biomed. Eng., vol. 36, no. 1, pp. 145–156, 2016. https://doi.org/10.1016/j.bbe.2015.10.009.

      [43] S. Pant, N. W. Bressloff, and G. Limbert, “Geometry parameterization and multidisciplinary constrained optimization of coronary stents,†Biomech. Model. Mechanobiol vol. 11, no. 1–2, pp. 61–82, 2012. https://doi.org/10.1007/s10237-011-0293-3.

      [44] G. A. Holzapfel, M. Stadler, C. A. J. Schulze-bauer, G. A. Holzapfel, M. Stadler, and C. A. J. Schulze-bauer, “A layer-specific 3D model for the simulation of balloon angioplasty using MR imaging and mechanical testing 1 A layer-specific 3D model for the simulation of balloon angioplasty using MR imaging and mechanical testing,†Ann. Biomed. Eng., vol. 30, no. 6 (2002), pp. 753–767, 2002.

      [45] B. P. Murphy, P. Savage, P. E. McHugh, and D. F. Quinn, “The stress-strain behavior of coronary stent struts is size dependent,†Ann. Biomed. Eng., vol. 31, no. 6, pp. 686–691, 2003. https://doi.org/10.1114/1.1569268.

      [46] G. A. Holzapfel, “A new constitutive framework for arterial wall mechanics and a comparative study of material models,†J. Elast., vol. 61, no. 1–3, pp. 1–48, 2000. https://doi.org/10.1023/A:1010835316564.

      [47] S. Zhao, “On the importance of modeling stent procedure for predicting arterial mechanics.†J. Biomech. Eng., vol. 134, no. 12, p. 121005, 2012. https://doi.org/10.1115/1.4023094.

      [48] H. Zahedmanesh, “Determination of the influence of stent strut thickness using the finite element method: Implications for vascular injury and in-stent restenosis,†Med. Biol. Eng. Comput., vol. 47, no. 4, pp. 385–393, 2009. https://doi.org/10.1007/s11517-009-0432-5.

      [49] A. Karimi and M. Navidbakhsh, “A nonlinear finite element simulation of balloon expandable stent for assessment of plaque vulnerability inside a stenotic artery,†Med Biol Eng Comput, vol. 52, pp. 589–599, 2014. https://doi.org/10.1007/s11517-014-1163-9.

      [50] G. Sommer, “Mechanical Properties of Healthy and Diseased Human Arteries, Monographic Series TU Graz,†Volume 7.2008, p. 258.

      [51] C. Chiastra, F. Migliavacca, M. A. Martinez, and M. Malve, “On the necessity of modelling fluid-structure interaction for stented coronary arteries,†J. Mech. Behav. Biomed. Mater. vol. 34, pp. 217–230, 2014. https://doi.org/10.1016/j.jmbbm.2014.02.009.

      [52] F. Fogarotto, “Finite Element Analysis of Coronary Artery Stentingâ€,Phd thesis, Università degli Studi di Pavia,ITALY, 2010.

      [53] C. A. Sweeney, P. E. McHugh, J. P. McGarry, and S. B. Leen, “Micromechanical methodology for fatigue in cardiovascular stents,†Int. J. Fatigue, vol. 44, pp. 202–216, 2012. https://doi.org/10.1016/j.ijfatigue.2012.04.022.

      [54] A. Dibra, A. Kastrati, J. Mehilli, J. Pache, R. Von Oepen, J. Dirschinger, and A. Schömig, “Influence of stent surface topography on the outcomes of patients undergoing coronary stenting: A randomized double-blind controlled trial,†Catheter. Cardiovasc. Interv, vol. 65, no. 3, pp. 374–380, 2005. https://doi.org/10.1002/ccd.20400.

      [55] L. Wiesent, M. Wagner, and M. Geith, “Simulation of Fluid-Structure Interaction between injection medium and balloon catheter using ICFD,†in 11th European LS-DYNA Conference 2017, Salzburg, Austria, 2017.

      [56] V. S. Taware, “Segmentation and Reconstruction Techniques for Modeling of Blood Vessel,†Int. J. Comput. Appl., vol. 162, no. 8, pp. 22–27, 2017.

      [57] C. A. Taylor and C. A. Figueroa, “Patient-Specific Modeling of Cardiovascular Mechanics,†Annu. Rev. Biomed. Eng., vol. 11, no. 1, pp. 109–134, 2009. https://doi.org/10.1146/annurev.bioeng.10.061807.160521.

      [58] F. J. Sawaya, T. Lefèvre, B. Chevalier, P. Garot, T. Hovasse, M. C. Morice, T. Rab, and Y. Louvard, “Contemporary Approach to Coronary Bifurcation Lesion Treatment,†JACC Cardiovasc. Interv., vol. 9, no. 18, pp. 1861–1878, 2016. https://doi.org/10.1016/j.jcin.2016.06.056.

      [59] H. J. Kim, I. E. Vignon-Clementel, J. S. Coogan, C. A. Figueroa, K. E. Jansen, and C. A. Taylor, “Patient-specific modeling of blood flow and pressure in human coronary arteries,†Ann. Biomed. Eng., vol. 38, no. 10, pp. 3195–3209, 2010. https://doi.org/10.1007/s10439-010-0083-6.

      [60] B. Jani and C. Rajkumar, “Ageing and vascular ageing,†Postgrad. Med. J., vol. 82, no. 968, pp. 357–362, 2006. https://doi.org/10.1136/pgmj.2005.036053.

      [61] E. J. Metter, R. Conwit, J. Tobin, and J. L. Fozard, “Age-Associated Loss of Power and Strength in the Upper Extremities in Women and Men,†Journals Gerontol. Ser. A Biol. Sci. Med. Sci., vol. 52A, no. 5, pp. B267–B276, 1997.

      [62] A. C. Dunn, T. D. Zaveri, B. G. Keselowsky, and W. G. Sawyer, “Macroscopic friction coefficient measurements on living endothelial cells,†Tribol. Lett. vol. 27, no. 2, pp. 233–238, 2007. https://doi.org/10.1007/s11249-007-9230-0 ...

      [63] S. Adigopula and A. Nsair, “Left Main Coronary Artery Stent Migration,†N. Engl. J. Med., vol. 373, no. 20, p. 1957, 2015. https://doi.org/10.1056/NEJMicm1500200.

      [64] S. H. Ann, J. W. Chung, C. De Jin, J. H. Lee, J. M. Kim, S. Garg, and E. S. Shin, “Better inflation time of stent balloon for second-generation drug-eluting stent expansion and apposition: An optical coherence tomography study,†J. Interv. Cardiol.vol. 27, no. 2, pp. 171–176, 2014. https://doi.org/10.1111/joic.12096.

  • Downloads

  • How to Cite

    Bekal, C., Hiroshi Yamada, D., Ranjan Shetty, D., & Satish Shenoy, D. (2018). Application of finite element analysis on balloon expandable coronary stents: A review. International Journal of Engineering & Technology, 7(3), 1640-1647. https://doi.org/10.14419/ijet.v7i3.13845