Fillers preparation for polymer composite and its properties – a review

  • Authors

    • T Vinod Kumar
    • M Chandrasekaran
    • P Mohanraj
    • Ravishankar Balasubramanian
    • R Muraliraja
    • V S. Shaisundaram
    2018-06-08
    https://doi.org/10.14419/ijet.v7i2.33.13889
  • Polymer Composite, Reinforcements, Fillers, Properties, Method, Procedures.
  • Abstract

    This paper is a review about the manufacture of polymer matrix composite by the filler materials, property and its preparation. Day by day the role of composite materials in industrial and household applications is increased. By using the variety of matrix, reinforcement and filler materials the polymer composite obtains from it. To improve the mechanical properties of the polymer composite, important role is played by filler materials. There is a unique property for each type of filler materials, which is altered by changing the percentage of filler materials. Filler materials important purpose is to reduce the cost of material and it increase the mechanical properties, that also use to increase surface finish and thermal property. In this paper, the elaboration of polymer materials and its uses are discussed, which held later the synthesis of polymer composite by different fillers. The filler properties, manufacture methods, polymer composite properties are discussed.

     

     

  • References

    1. [1] Ojha, S., Raghavendra, G., & Acharya, S. K. (2014). A comparative investigation of bio waste filler (wood appleâ€coconut) reinforced polymer composites. Polymer Composites, 35(1), 180-185.

      [2] Sutivisedsak, N., Cheng, H. N., Dowd, M. K., Selling, G. W., & Biswas, A. (2012). Evaluation of cotton by products as fillers for poly (lactic acid) and low density polyethylene. Industrial crops and products, 36(1), 127-134.

      [3] Ribeiro, M. C. S., Meira-Castro, A. C., Silva, F. G., Santos, J., Meixedo, J. P., Fiúza, A.,&Alvim, M. R. (2015). Re-use assessment of thermoset composite wastes as aggregate and filler replacement for concrete-polymer composite materials: A case study regarding GFRP pultrusion wastes. Resources, Conservation and Recycling, 104, 417-426.

      [4] Kim, K. W., Lee, B. H., Kim, H. J., Sriroth, K., & Dorgan, J. R. (2012). Thermal and mechanical properties of cassava and pineapple flours-filled PLA bio-composites. Journal of thermal analysis and calorimetry, 108(3), 1131-1139.

      [5] Agunsoye, J. O., & Aigbodion, V. S. (2013). Bagasse filled recycled polyethylene bio-composites: Morphological and mechanical properties study. Results in Physics, 3, 187-194.

      [6] Mohan, T. P., & Kanny, K. (2011). Water barrier properties of nanoclay filled sisal fibre reinforced epoxy composites. Composites Part A: Applied Science and Manufacturing, 42(4), 385-393.

      [7] Nayak, R. K., Rathore, D., Routara, B. C., & Ray, B. C. (2016). Effect of nano fillers and cross head velocity on interlaminar shear strength of glass fiber reinforced polymer composite. International Journal of Plastics Technology, 20(2), 334-344.

      [8] Kumar, R., Kumar, K., Sahoo, P., & Bhowmik, S. (2014). Study of mechanical properties of wood dust reinforced epoxy composite. Procedia Materials Science, 6, 551-556.

      [9] Elshaarani, M. T., Yaakob, Z., Dahlan, K. Z. M., & Mohammad, M. (2013). Jatropha deoiled cake fillerâ€reinforced mediumâ€density polyethylene biocomposites: Effect of filler loading and coupling agent on the mechanical, dynamic mechanical and morphological properties. Polymer Composites, 34(5), 746-756.

      [10] Mittal, G., Dhand, V., Rhee, K. Y., Park, S. J., & Lee, W. R. (2015). A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites. Journal of Industrial and Engineering Chemistry, 21, 11-25.

      [11] Nath, D. C. D., Bandyopadhyay, S., Gupta, S., Yu, A., Blackburn, D., & White, C. (2010). Surface-coated fly ash used as filler in biodegradable poly (vinyl alcohol) composite films: Part 1—the modification process. Applied Surface Science, 256(9), 2759-2763.

      [12] Ludueña, L., Vázquez, A., & Alvarez, V. (2012). Effect of lignocellulosic filler type and content on the behavior of polycaprolactone based eco-composites for packaging applications. Carbohydrate polymers, 87(1), 411-421.

      [13] Ghalia, M. A., Hassan, A., & Yussuf, A. (2011). Mechanical and thermal properties of calcium carbonateâ€filled PP/LLDPE composite. Journal of Applied Polymer Science, 121(4), 2413-2421.

      [14] Neppalli, R., Marega, C., Marigo, A., Bajgai, M. P., Kim, H. Y., & Causin, V. (2010). Poly (ε-caprolactone) filled with electrospun nylon fibres: a model for a facile composite fabrication. European polymer journal, 46(5), 968-976.

      [15] Stassi, S., & Canavese, G. (2012). Spiky nanostructured metal particles as filler of polymeric composites showing tunable electrical conductivity. Journal of Polymer Science Part B: Polymer Physics, 50(14), 984-992.

      [16] Liu, W., Liu, N., Sun, J., Hsu, P. C., Li, Y., Lee, H. W., & Cui, Y. (2015). Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers. Nano letters, 15(4), 2740-2745.

      [17] Shim, J., Kim, D. G., Kim, H. J., Lee, J. H., & Lee, J. C. (2015). Polymer Composite Electrolytes Having Core–Shell Silica Fillers with Anion-Trapping Boron Moiety in the Shell Layer for All-Solid-State Lithium-Ion Batteries. ACS applied materials & interfaces, 7(14), 7690-7701.

      [18] Tanimoto, M., Yamagata, T., Miyata, K., & Ando, S. (2013). Anisotropic thermal diffusivity of hexagonal boron nitride-filled polyimide films: effects of filler particle size, aggregation, orientation, and polymer chain rigidity. ACS applied materials & interfaces, 5(10), 4374-4382.

      [19] Li, T., Pan, Y., Peinemann, K. V., & Lai, Z. (2013). Carbon dioxide selective mixed matrix composite membrane containing ZIF-7 nano-fillers. Journal of membrane science, 425, 235-242.

      [20] Zhang, C., Dai, Y., Johnson, J. R., Karvan, O., &Koros, W. J. (2012). High performance ZIF-8/6FDA-DAM mixed matrix membrane for propylene/propane separations. Journal of Membrane Science, 389, 34-42.

      [21] Liu, X. L., Li, Y. S., Zhu, G. Q., Ban, Y. J., Xu, L. Y., & Yang, W. S. (2011). An Organophilic Pervaporation Membrane Derived from Metal–Organic Framework Nanoparticles for Efficient Recovery of Bioâ€Alcohols. Angewandte Chemie International Edition, 50(45), 10636-10639.

      [22] Zornoza, B., Seoane, B., Zamaro, J. M., Téllez, C., & Coronas, J. (2011). Combination of MOFs and Zeolites for Mixedâ€Matrix Membranes. ChemPhysChem, 12(15), 2781-2785.

      [23] Ordonez, M. J. C., Balkus, K. J., Ferraris, J. P., &Musselman, I. H. (2010). Molecular sieving realized with ZIF-8/Matrimid® mixed-matrix membranes. Journal of Membrane Science, 361(1), 28-37.

      [24] Bae, T. H., Lee, J. S., Qiu, W., Koros, W. J., Jones, C. W., & Nair, S. (2010). A Highâ€Performance Gasâ€Separation Membrane Containing Submicrometerâ€Sized Metal–Organic Framework Crystals. Angewandte Chemie International Edition, 49(51), 9863-9866.

      [25] Yang, T., Xiao, Y., & Chung, T. S. (2011). Poly-/metal-benzimidazolenano-composite membranes for hydrogen purification. Energy & Environmental Science, 4(10), 4171-4180.

      [26] Tserki, V., Matzinos, P., & Panayiotou, C. (2003). Effect of compatibilization on the performance of biodegradable composites using cotton fiber waste as filler. Journal of applied polymer science, 88(7), 1825-1835.

      [27] Toro, P., Quijada, R., Yazdani-Pedram, M., & Arias, J. L. (2007). Eggshell, a new bio-filler for polypropylene composites. Materials Letters, 61(22), 4347-4350.

      [28] Li, H. Y., Tan, Y. Q., Zhang, L., Zhang, Y. X., Song, Y. H., Ye, Y., & Xia, M. S. (2012). Bio-filler from waste shellfish shell: preparation, characterization, and its effect on the mechanical properties on polypropylene composites. Journal of hazardous materials, 217, 256-262.

      [29] Yao, Z., Xia, M., Ge, L., Chen, T., Li, H., Ye, Y., & Zheng, H. (2014). Mechanical and thermal properties of polypropylene (PP) composites filled with CaCO3 and shell waste derived bio-fillers. Fibers and Polymers, 15(6), 1278-1287.

      [30] Zheng, Y., Shen, Z., Cai, C., Ma, S., & Xing, Y. (2009). The reuse of nonmetals recycled from waste printed circuit boards as reinforcing fillers in the polypropylene composites. Journal of Hazardous Materials, 163(2), 600-606.

      [31] Kim, H. S., Yang, H. S., Kim, H. J., Lee, B. J., & Hwang, T. S. (2005). Thermal properties of agro-flour-filled biodegradable polymer bio-composites. Journal of Thermal Analysis and Calorimetry, 81(2), 299-306.

      [32] Zaini, M. J., Fuad, M. A., Ismail, Z., Mansor, M. S., &Mustafah, J. (1996). The effect of filler content and size on the mechanical properties of polypropylene/oil palm wood flour composites. Polymer International, 40(1), 51-55.

      [33] Yang, H. S., Kim, H. J., Son, J., Park, H. J., Lee, B. J., & Hwang, T. S. (2004). Rice-husk flour filled polypropylene composites; mechanical and morphological study. Composite Structures, 63(3), 305-312

      [34] Sanadi, A. R., Caulfield, D. F., Jacobson, R. E., & Rowell, R. M. (1995). Renewable agricultural fibers as reinforcing fillers in plastics: Mechanical properties of kenaffiber-polypropylene composites. Industrial & Engineering Chemistry Research, 34(5), 1889-1896.

      [35] Luyt, A. S., Molefi, J. A., & Krump, H. (2006). Thermal, mechanical and electrical properties of copper powder filled low-density and linear low-density polyethylene composites. Polymer Degradation and Stability, 91(7), 1629-1636.

      [36] Kranthi, G., & Satapathy, A. (2010). Evaluation and prediction of wear response of pine wood dust filled epoxy composites using neural computation. Computational Materials Science, 49(3), 609-614.

      [37] Ismail, H., & Shaari, S. M. (2010). Curing characteristics, tensile properties and morphology of palm ash/halloysite nano tubes/ethylene-propylene-diene monomer (EPDM) hybrid composites. Polymer Testing, 29(7), 872-878.

      [38] Tang, C., & Liu, H. (2008). Cellulose nanofiber reinforced poly (vinyl alcohol) composite film with high visible light transmittance. Composites Part A: Applied Science and Manufacturing, 39(10), 1638-1643.

      [39] Skrtic, D., Antonucci, J. M., & Eanes, E. D. (1996). Improved properties of amorphous calcium phosphate fillers in remineralizing resin composites. Dental Materials, 12(5-6), 295-301.

      [40] Buggy, M., Bradley, G., & Sullivan, A. (2005). Polymer–filler interactions in kaolin/nylon 6, 6 composites containing a silane coupling agent. Composites Part A: Applied Science and Manufacturing, 36(4), 437-442.

      [41] Zhou, Y., Wang, L., Zhang, H., Bai, Y., Niu, Y., & Wang, H. (2012). Enhanced high thermal conductivity and low permittivity of polyimide based composites by core-shell Ag@ SiO2 nanoparticle fillers. Applied Physics Letters, 101(1), 012903.

  • Downloads

  • How to Cite

    Vinod Kumar, T., Chandrasekaran, M., Mohanraj, P., Balasubramanian, R., Muraliraja, R., & S. Shaisundaram, V. (2018). Fillers preparation for polymer composite and its properties – a review. International Journal of Engineering & Technology, 7(2.33), 212-217. https://doi.org/10.14419/ijet.v7i2.33.13889

    Received date: 2018-06-08

    Accepted date: 2018-06-08

    Published date: 2018-06-08