Design of 2.75-2.85 Ghz Frequency Microstrip Band Pass Filter with Square Open-Loop Resonator in Radar Method
-
2018-05-22 https://doi.org/10.14419/ijet.v7i2.29.14003 -
Band Pass Filter, CST, Microstrip, Square Open-Loop Resonator -
Abstract
Radar is an important component for people. A number of functions could be taken into account on a various aspect in term of quantifying the distance of a specific object, developing a map, and/ or forecasting climate. Generally, one of the main instruments within a radar is a filter. The aim of this study is to design a simple Band Pass Filter which able to be effectively worked on frequency 2.75–2.85 GHz. The filter is designed at the mid frequency of 2.8 GHz with ≤ -20 dB of Return Loss Range, ≥ -3 dB for Insertion Loss, and 100 MHz for Bandwidth, then it is manufactured into a Square Open-Loop Resonator microstrip. The filter uses Rogers R04035B for its substrate with 3.48 of Dielectric Constant Values  and 1.524 mm of Substrate Thickness (h). The radar’s filter is simulated by a software of Computer System Technology (CST) suite 2015. The simulation results -31.608995 dB for Return Loss Range, -2.0529871 dB, and 100 MHz for Insertion Loss and Bandwidth respectively. By the end of this process, this instrument is applied and a Network Analyzer is then utilized to get a comparable output. It produces a quite different ranges of -23.519 dB for Return Loss, -2,183 dB for Insertion Loss and 90 MHz for Bandwidth. The study results a design of radar’s simple band pass filter which work effectively on frequency 2.75–2.85 GHz.
Â
Â
-
References
[1]. Alaydrus, M. (2009). Saluran Transmisi Telekomunikasi. Yogyakarta: Graha Ilmu.
[2]. Astutik, U. P., & Pramono, Y. H. (2010). Fabrikasi dan Karakterisasi Antena Panel 2,4 GHz Berisi 4 Larik Mikrostrip Double Bi-Quad. SEMNAS MIPA, (pp. Fis 37-41). Surabaya.
[3]. Bustomi, Y., Ramdhani, M. A., & Cahyana, R. (2012). Rancang Bangun Sistem Informasi Geografis Sebaran Tempat Riset Teknologi Informasi di Kota Garut. Jurnal Algoritma, 9(1), 1-7.
[4]. Hong, J.-S. G., & Lancaster, M. J. (2001). Microstrip Filters for RF/ Microwave Applications. New York: John Wiley & Sons.
[5]. Marimuthu, J., Esa, M., & Yusof, S. K. (2008). Single-Stage Parallel Coupled Microstrip Line Bandpass Filter using Weak Coupling Technique. IEEE international RF and Microwave Conference Proceedings, (pp. 242-246). Kuala Lumpur.
[6]. Pamoragung, A., Suryadi, K., & Ramdhani, M. A. (2006). Enhancing the Implementation of e-Government in Indonesia through the High-Quality of Virtual Community and Knowledge Portal. 6th European Conference on e-Government (pp. 341-347). Marburg: Academic Conferences Limited.
[7]. Prasetyo, W. (2016). Perancangan dan Realisasi Band Pass Filter Menggunakan Metode Square Open Loop Resonator dengan Via Ground Hole. Jakarta: Universitas Mercu Buana.
[8]. Riswandi, M. I., Wijanto, H., & Syihabuddin, B. (2016). Desain dan Realisasi Bandpass Filter 2,425 GHz dengan Coupled Line untuk Receiver Stasiun Bumi pada Sistem Nano Satelit. Bandung: Universitas Telkom.
[9]. Rosmawati, R., Prasetya, B., & Daud, P. (2011). Perancangan dan Realisasi Band Pass Filter Berbasis Mikrostrip Frekuensi 2,4-2,48 GHz. Bandung: Universitas Telkom.
[10]. Sakinah, L., & Muntini, M. S. (2016). Perancangan Pembuatan Prototipe Band Pass Filter untuk Optimasi Transfer Daya pada Sinyal Frekuensi Rendah; Studi Kasus Sinyal EEG. Surabaya: Institut Teknologi Sepuluh Nopember.
[11]. Slamet, C., Rahman, A., Ramdhani, M. A., & Darmalaksana, W. (2016). Clustering the Verses of the Holy Qur'an using K-Means Algorithm. Asian Journal of Information Technology, 15(24), 5159-5162.
[12]. Yusuf, F. (2012). Rancang bangun BandPass Filter untuk Aplikasi Radar X-Band menggunakan Renator Mikrostrip Hairpin dengan Menggunakan Open Stub dan Square Grouve. Jakarta: Universitas Indonesia.
-
Downloads
-
How to Cite
Faroqi, A., Ali Ramdhani, M., Dwi Andika, D., & Soedarsono, S. (2018). Design of 2.75-2.85 Ghz Frequency Microstrip Band Pass Filter with Square Open-Loop Resonator in Radar Method. International Journal of Engineering & Technology, 7(2.29), 711-715. https://doi.org/10.14419/ijet.v7i2.29.14003Received date: 2018-06-10
Accepted date: 2018-06-10
Published date: 2018-05-22