Design and analysis of plasmonic nanostub filter using metal-insulator- met-al (MIM) waveguide

  • Authors

    • Dr Suraya Mubeen Associate Professor, CMRTC, Hyderabad
    2018-08-23
    https://doi.org/10.14419/ijet.v7i3.14215
  • Metal-Insulator-Metal (MIM), Nanostub Structure, Photonic Integrated Circuits (Pics), Plasmonic Filter, Transmittance.
  • Metal-insulator-metal (MIM) silicon based nanostub structures have been designed and analyzed using the finite difference time-domain (FDTD) technique. An analytic model is discussed which is based on the resonance theory. Numerical results show double and single narrow band transmissions for small and long lengths of nanostub, respectively. The transmission band of the structure is controlled by varying the width and the length of the nanostub. These MIM nanostub structure can have potential applications in nanoscale high density photonic integrated circuits (PICs).

     

     

  • References

    1. [1] H. Raether, Surface Plasmon on Smooth and Rough Surfaces and Gratings. Berlin, Germany: Springer-Verlag, 1998.

      [2] W. L. Barnes, A. Dereux, and T. Ebbesen, “Surface plasmon Subwavelength optics,†Nature, vol. 424, pp. 824–830, 2003 https://doi.org/10.1038/nature01937.

      [3] J. C.Weeber, A. Dereu, C. Griard, J. R. Krenn, and J. P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,†Phys. Rev. B, vol. 60, pp. 9061–9068, 1999. https://doi.org/10.1103/PhysRevB.60.9061.

      [4] R. M. Dickson and L. A. Lyon, “Unidirectional plasmon propagation in metallic nanowires,†J. Phys. Chem. B, vol. 104, pp. 6095–6098, 2000. https://doi.org/10.1021/jp001435b.

      [5] M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,†Opt. Lett, vol. 23, pp. 1331–1333, 1998. https://doi.org/10.1364/OL.23.001331.

      [6] S.A.Maier, P. G. Kik, H. A. Atwater, S.Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,†Nat. Mater, vol. 2, pp. 229–232, 2003. https://doi.org/10.1038/nmat852.

      [7] Y. Matsuzaki, T. Okamoto, M. Haraguchi, M. Fukui, and A. Nakagaki, “Characteristics of gap plasmon waveguide with stub structures,†Opt. Express, vol. 16, pp. 16314–16325, 2009. https://doi.org/10.1364/OE.16.016314.

      [8] Xian-Shi Lin and Xu-Guang Huang, “Tooth-shaped plasmonic waveguide filters with nanometeric sizes,†Opt. Lett, vol. 33, pp. 2874-2876, 2008. https://doi.org/10.1364/OL.33.002874.

      [9] T. Lee and S.Gray, “Subwavelength light bending by metal slit structures,†Opt. Express, vol. 13, pp. 9652–9659, 2005. https://doi.org/10.1364/OPEX.13.009652.

      [10] G.Veronis and S. Fan, “Bends and splitters in metal dielectric–metal subwavelength plasmonic waveguides,†Appl. Phys. Lett, vol. 87, pp. 131105-1–131105-3, 2005. https://doi.org/10.1063/1.2056594.

      [11] C. J. Min and G. Veronis, “Absorption switches in metal-dielectric-metal plasmonic waveguides,†Opt. Express, vol. 17, pp. 10757–10766, 2009. https://doi.org/10.1364/OE.17.010757.

      [12] Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Gain-induced switching in metal-dielectric-metal plasmonic waveguides,†Appl. Phys. Lett, vol. 92, p. 041117, 2008. https://doi.org/10.1063/1.2839324.

      [13] H. Gao, H. Shi, C. Wang, C. Du, X. Luo, Q. Deng, Y. Lv, X. Lin, and H. Yao, “Surface plasmon polariton propagation and combination in Yshaped metallic channels,†Opt. Express, vol. 13, pp. 10795–10800, 2005. https://doi.org/10.1364/OPEX.13.010795.

      [14] H. Zhao, X.Huang, and J.Huang, “Novel optical directional coupler based on surface plasmon polaritons,†Physica. E, vol. 40, pp. 3025–3029, 2008. https://doi.org/10.1016/j.physe.2008.02.019.

      [15] Z. Han, L. Liu, and E. Forsberg, “Ultra-compact directional couplers and Mach-Zehnder interferometers employing surface plasmon polaritons,†Opt. Commun, vol. 259, pp. 690–695, 2006. https://doi.org/10.1016/j.optcom.2005.09.034.

      [16] B.Wang and G.Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surface,†Appl. Phys. Lett, vol. 87, p. 013107, 2005. https://doi.org/10.1063/1.1954880.

      [17] Q. Zhang, X.-G. Huang, X.-S. Lin, J. Tao, and X.-P. Jin, “A Subw avelength coupler-type MIM optical filter,†Opt. Express, vol. 17, pp. 7549–7554, 2009. https://doi.org/10.1364/OE.17.007549.

      [18] W. Lin and G. Wang, “Metal hetero waveguide superlattices for a plasmonic analog to electronic bloch oscillations,†Appl. Phys. Lett, vol. 91, p. 143121, 2007. https://doi.org/10.1063/1.2795344.

      [19] X.-S. Lin and X.-G. Huang, “Numerical modeling of a teeth-shaped nanoplasmonic waveguide filter,†J. Opt. Soc. Am. B, vol. 26, pp. 1263–1268, 2009. https://doi.org/10.1364/JOSAB.26.001263.

      [20] J, Tao, X.-G. Huang and S.-H. Liu, "Optical Characteristics of Surface Plasmon Nanonotch Structure," J. Opt. Soc. Am., B, Vol. 27, No. 7, July 2010.

      [21] P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,†Phys. Rev, vol. 6, pp. 4370–4379, 1972. https://doi.org/10.1103/PhysRevB.6.4370.

  • Downloads

  • How to Cite

    Suraya Mubeen, D. (2018). Design and analysis of plasmonic nanostub filter using metal-insulator- met-al (MIM) waveguide. International Journal of Engineering & Technology, 7(3), 1915-1917. https://doi.org/10.14419/ijet.v7i3.14215