Estimating ARMA Model Parameters of an Industrial Process Using Meta-Heuristic Search Algorithms

  • Authors

    • Alaa F. Sheta Texas A&M University-corpus Christi, TX, USA
    • Hossam Faris
    • Ibrahim Aljarah
    2018-07-19
    https://doi.org/10.14419/ijet.v7i3.10.14357
  • Manufacture Process, Meta-Heuristic Search Algorithms, Parameter Estimation
  • Abstract

    This paper addresses the parameter estimation problem for a manufacturing process based on the Auto-Regressive Moving Average (ARMA) model. The accurate estimation of the ARMA model’s parameter helps to reduce the production costs, provide better product quality, increase productivity and profit. Meta-heuristic algorithms are among these approximate techniques which have been successfully used to search for an optimal solution in complex search space. Meta-heuristic algorithms can converge to an optimal global solution despite traditional parameter estimation techniques which stuck by local optimal. A comparison between Meta-heuristic algorithms: Genetic Algorithms (GA), Particle Swarm Optimization (PSO) and the Accelerated PSO, Cuckoo Search, Krill Herd and Firefly algorithm is provided to handle the parameter estimation problem for a Winding process in the industry. The developed ARMA-meta-heuristics models for a winding machine are evaluated based on different evaluation metrics. The results reveal that meta-heuristics can provide an outstanding modeling performance.

  • References

    1. [1] M. H. Ali, N. H. El-Amary, H. E. A. Ibrahim, and R. I. Mashaly, “An upgraded soft winding machines based on advanced yarn tension modelling for using cotton,†in Proceedings of the 2016 2nd International Conference on Advances in Electrical, Electronics, Information, Communication and Bio-Informatics (AEEICB), Feb 2016, pp. 17–21.

      [2] Y. Eddoukali, E. E. Adel, A. Benzaouia, and M. Ouladsine, “Fault detection for hybrid dynamical system application to winding machine,†in Proceedings of the 2016 5th International Conference on Systems and Control (ICSC), May 2016, pp. 394–399.

      [3] W. Mo, M. Wang, J.-S. Lin, H. Zan, and G. Sun, “Control system based on plc for winding machine,†in Proceedings of the 2014 International Symposium on Computer, Consumer and Control (IS3C), June 2014, pp. 74–77.

      [4] W. Jian, Z. Xu, W. Minghong, and D. Dehong, “Research on spindle drive control system of high speed winding machine,†in Proceedings of the 8th International Conference on Electronic Measurement and Instruments (ICEMI’07), Aug 2007, pp. 473–477.

      [5] H. Abbasi Nozari, H. Dehghan Banadaki, M. Mokhtare, and S. Hekmati Vahed, “Intelligent non-linear modelling of an industrial winding process using recurrent local linear neurofuzzy networks,†Journal of Zhejiang University - Science C, vol. 13, no. 6, pp. 403–412, Jun. 2012.

      [6] L. Ljung and T. Soderstrom, Theory and Practice of Recursive Identification. Cambridge MA: MIT Press, 1983.

      [7] L. Ljung, System Identification Theory for the User. Prentice Hall, 1987.

      [8] N. Borchardt, R. Hinzelmann, D. S. Pucula, W. Heinemann, and R. Kasper, “Winding machine for automated production of an innovative air-gap winding for lightweight electric machines,†IEEE/ASME Transactions on Mechatronics, vol. 21, no. 3, pp. 1509–1517, June 2016.

      [9] R. Johansson, System Modeling and Identification. NJ: Prentice Hall, 1993.

      [10] A. Isidori, Nonlinear Control Systems. Germany: SpringerVerlage, 1995.

      [11] W. M. Aly and A. Sheta, “Parameter estimation of nonlinear systems using lèvy flight cuckoo search,†in Research and Development in Intelligent Systems XXX, M. Bramer and M. Petridis, Eds. Cham: Springer International Publishing, 2013, pp. 443–449.

      [12] A. Gelb, Applied Optimal Estimation. Cambridge: MIT Press, 1974.

      [13] M. Tummala, “Efficient iterative methods for FIR least squares identification,†IEEE Transaction Acoust., Speech, Signal Processing, vol. 38, no. 5, pp. 887–890, 1990.

      [14] S. Nam, S. Kim, and E. Powers, “On the identification of a third-order Volterra nonlinear system using a frequency domain block RLS algorithm,†in Proceedings of the IEEE Transaction Acoust., Speech, Signal Processing, 1990, pp. 2407–2410.

      [15] H. Hailiang, W. Zhong, N. Xiaohong, and S. Jing, “Robust decentralized control of web-winding systems without tension sensor,†in Proceedings of the 2015 34th Chinese Control Conference (CCC), July 2015, pp. 8850–8854.

      [16] M. H. Ali, H. E. A. Ibrahim, N. H. El-Amary, and R. I. Mashaly, “An upgraded soft winding machines based on advanced yarn tension modelling,†in Proceedings of the 2015 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices (ASEMD), Nov 2015, pp. 571–572.

      [17] A. Hussian, A. Sheta, M. Kamel, M. Telbany, and A. Abdelwahab, “Modeling of a winding machine using genetic programming,†in Proceedings of the Congress on Evolutionary Computation (CEC2000), vol. 82, 2000, pp. 398–402.

      [18] A. Hussian, A. Sheta, and A. Abdelwahab, “Modeling of a winding machine using non-parametric neural network model,†in WSEAS International Conference on Scientific Computation and Soft Computing, Athens, Greece, 2001, pp. 528–553.

      [19] A. Rodan, A. F. Sheta, and H. Faris, “Bidirectional reservoir networks trained using SVM+ privileged information for manufacturing process modeling,†Soft Computing, pp. 1–14, 2016.

      [20] H. Faris, I. Aljarah, and S. Mirjalili, “Improved monarch butterfly optimization for unconstrained global search and neural network training,†Applied Intelligence, vol. 48, no. 2, pp. 445–464, 2018.

      [21] I. Aljarah, H. Faris, S. Mirjalili, and N. Al-Madi, “Training radial basis function networks using biogeography-based optimizer,†Neural Computing and Applications, vol. 29, no. 7, pp. 529–553, 2018.

      [22] I. Aljarah, H. Faris, and S. Mirjalili, “Optimizing connection weights in neural networks using the whale optimization algorithm,†Soft Computing, vol. 22, no. 1, pp. 1–15, 2018.

      [23] H. Faris, I. Aljarah, and S. Mirjalili, “Evolving radial basis function networks using moth–flame optimizer,†in Handbook of Neural Computation, 2017, pp. 537–550.

      [24] H. Faris, I. Aljarah, N. Al-Madi, and S. Mirjalili, “Optimizing the learning process of feedforward neural networks using lightning search algorithm,†International Journal on Artificial Intelligence Tools, vol. 25, no. 06, p. 1650033, 2016.

      [25] N. Ghatasheh, H. Faris, I. Aljarah, and R. M. Al-Sayyed, “Optimizing software effort estimation models using firefly algorithm,†Journal of Software Engineering and Applications, vol. 8, no. 03, p. 133, 2015.

      [26] B. L. Andersen, W. C. Page, and J. R. McDonnell, “Multioutput system identification using evolutionary programming,†in Proceedings of the 1991 Conference Record of the TwentyFifth Asilomar Conference on Signals, Systems and Computers, Nov 1991, pp. 546–550.

      [27] R. R. Bishop and G. G. Richards, “Identifying induction machine parameters using a genetic optimization algorithm,†in Proceedings of the Southeastcon, vol. 2, Apr 1990, pp. 476–479.

      [28] Y. Shi, W. Qian, Q. Wang, and K. He, “Aerodynamic parameter estimation using genetic algorithms,†in Proceedings of the 2006 IEEE International Conference on Evolutionary Computation (CEC0, July 2006, pp. 629–633.

      [29] W. D. Chang, J. P. Cheng, M. C. Hsu, and L. C. Tsai, “Parameter identification of nonlinear systems using a particle swarm optimization approach,†in Proceedings of the 2012 Third International Conference on Networking and Computing (ICNC), Dec 2012, pp. 113–117.

      [30] Y. X. S., Nature-Inspired Metaheuristic Algorithms. Luniver Press, USA, 2008.

      [31] L. Costa and P. Olivera, “Evolutionary algorithms approach to the solution of mixed integer non-linear programming problems,†Computers and Chemical Engineering, vol. 25, pp. 257–266, 2001.

      [32] H. Faris and A. F. Sheta, “A comparison between parametric and non-parametric soft computing approaches to model the temperature of a metal cutting tool,†International Journal of Computer Integrated Manufacturing, vol. 29, no. 1, pp. 64–75, 2016.

      [33] H. Faris, A. Sheta, and E. Öznergiz, “Modelling hot rolling manufacturing process using soft computing techniques,†International Journal of Computer Integrated Manufacturing, vol. 26, no. 8, pp. 762–771, 2013.

      [34] J. Holland, “Genetic algorithms,†Scientific American, pp. 66–72, 1992.

      [35] J. H. Holland, Adaptation in Natural and Artificial Systems. Cambridge, MA, USA: MIT Press, 1992.

      [36] J. Kennedy and R. C. Eberhart, “Particle swarm optimization,†in Proceedings of the IEEE International Conference on Neural Networks. Piscataway, NJ, USA, 1995, pp. 1942– 1948.

      [37] A. H. Gandomi and A. H. Alavi, “Krill herd: A new bioinspired optimization algorithm,†Communications in Nonlinear Science and Numerical Simulation, vol. 17, no. 12, pp. 4831 – 4845, 2012.

      [38] X.-S. Yang and S. Deb, “Cuckoo search via lévy flights,†in NaBIC, 2009, pp. 210–214.

      [39] X. Yang and S. Deb, “Engineering optimisation by cuckoo search,†International Journal of Mathematical Modelling and Numerical Optimisation, vol. 1, no. 4, pp. 330–343, 2010.

      [40] X.-S. Yang, “Firefly algorithms for multimodal optimization,†in Proceedings of the 5th International Conference on Stochastic Algorithms: Foundations and Applications, ser. SAGA’09. Berlin, Heidelberg: Springer-Verlag, 2009, pp. 169–178.

      [41] R. Isermann, K. Lachmann, and D. Matko, Adaptive Control Systems. New York: Prentice Hall, 1992.

      [42] X.-S. Yang, S. Deb, and S. Fong, “Accelerated particle swarm optimization and support vector machine for business optimization and applications,†in Networked Digital Technologies, ser. Communications in Computer and Information Science, S. Fong, Ed. Springer Berlin Heidelberg, 2011, vol. 136, pp. 53–66.

  • Downloads

  • How to Cite

    Sheta, A. F., Faris, H., & Aljarah, I. (2018). Estimating ARMA Model Parameters of an Industrial Process Using Meta-Heuristic Search Algorithms. International Journal of Engineering & Technology, 7(3.10), 187-194. https://doi.org/10.14419/ijet.v7i3.10.14357

    Received date: 2018-06-19

    Accepted date: 2018-07-17

    Published date: 2018-07-19