Energy Efficiency of a Hydraulically Actuated Plastering Machine

  • Authors

    • Bogdan Korobko
    • Dmytro Zadvorkin
    • Ievgen Vasyliev
    2018-06-20
    https://doi.org/10.14419/ijet.v7i3.2.14403
  • plaster station, solution, hydraulic drive, energy efficiency.
  • The supposition of productivity gain of finishing work using plastering machines has been considered in the article. The work of constituent parts of plastering machines has been studied. The working parameters of the plastering machine has also been calculated. There has been evolved the planning of a three-factor experiment of the second order with the aim of determining the working power, consumed by the mortar pump.

     

     

  • References

    1. [1] Onischenko V.O. (1996). Rozrakhunok vsmoktuvalnoho kulovoho klapana rozchynonasosa. Progressivnyie tehnologii i mashinyi dlya proizvodstva stroymaterialov, izdeliy i konstruktsiy, 102 – 104.

      [2] Hendrickx R., Roels S., Van Balen K. (2010), Measuring the water capacity and transfer properties of fresh mortar, Cement and Concrete Research, 40 (12), 1650–1655. DOI: 10.1016/j.cemconres.2010.08.002.

      [3] Jacobsen S., Haugan L., Hammer T. A., Kalogiannidis E. (2009), Flow conditions of fresh mortar and concrete in different pipes. Cement and Concrete Research, 39 (11), 997 – 1006. DOI: 10.1016/j.cemconres.2009.07.005.

      [4] Xiao H.Y., Yue W.H. (2011), Experimental Research on Rheological Properties of Cemented Mortar in Tail Void Grouting of Shield Tunnel. Advanced Materials Research, 261 – 263, 1201 – 1205. DOI: 10.4028/www.scientific.net/AMR.261-263.1201.

      [5] Kosky P., Balmer R., Keat W., Wise G. (2013). Chapter 10 – Manufacturing Engineering. Exploring Engineering (Third Edition), 205 – 235. DOI: 10.1016/b978-0-12-415891-7.00010-8.

      [6] Korobko B., Vasyliev Ie. (2017) Test method for rheological behavior of mortar for building work. Acta mechanica et automatica, 11/3 (41), 173 – 177. DOI: 10.1515/ama-2017-0025.

      [7] Pedrajas C., Rahhal V., Talero R. (2014). Determination of characteristic rheological parameters in Portland cement pastes. Construction and Building Materials, 51, 484 – 491. DOI: 10.1016/j.conbuildmat.2013.10.004.

      [8] Assaad J.J., Daou Y. (2014), Cementitious grouts with adapted rheological properties for injection by vacuum techniques, Cement and Concrete Research, 59, 43 – 54. DOI: 10.1016/j.cemconres.2014.01.021

      [9] Wang G.L., Ma M.L., Miao D.M., Ma H.J. (2014). Pump Ability of Concrete Mixture Improvement Based on Rich Mortar Theory Testing Method. Applied Mechanics and Materials, 472, 704 – 707. DOI: 10.4028/www.scientific.net/AMM.472.704.

      [10] Chen X., Wu S., Zhou J. (2013). Experimental and modeling study of dynamic mechanical properties of cement paste, mortar and concrete. Construction and Building Materials, 47, 419 – 430. DOI: 10.1016/j.conbuildmat.2013.05.063.

      [11] Perrot A., Rangeard D., Picandet V., Mélinge Y. (2013), Hydro-mechanical properties of fresh cement pastes containing polycarboxylate superplasticizer, Cement and Concrete Research, 53, 221 – 228. DOI: 10.1016/j.cemconres.2013.06.015.

      [12] Korobko B. (2016), Investigation of energy consumption in the course of plastering machine’s work, Eastern-European Journal of Enterprise Technologies, 4/8 (82), 4 – 11. DOI: 10.15587/1729-4061.2016.73336.

      [13] Roussel N. (2005) Steady and transient f1ow behaviour of fresh cement pastes, Cement and Concrete Research, 35, 1656 –1664. DOI: 10.1016/j.cemconres.2004.08.001.

      [14] Onyshchenko O.H., Vaschenko K.M. (2006), Rozrakhunok potuzhnosti ta vyznachennia oporiv, shcho vynykaiut pry roboti strichkovoho shnekovoho rozchynozmishuvacha. Visnyk KDPU, 1 (36), 58 – 63.

      [15] Navrotskiy K.L. Teoriya i praktika gidro- i pnevmoprivodov. (1991). M.: Mashinostroenie, 384.

      [16] Korobko B., Zadvorkin D., Vasyliev Ie. (2017) Study of the operating element motion law for a hydraulic-driven diaphragm mortar pump, Eastern-European Journal of Enterprise Technologies, 4/7 (88), 25 – 31. DOI: 10.15587/1729-4061.2017.106873.

      [17] Onyshchenko O.H., Vasyliev A.V., Ustiantsev V.U. (2002). Priamotochnyi maloimpulsnyi nasos iz kombinovanym pryvodom dvokh porshniv. Haluzeve mashynobuduvannia, budivnytstvo, 3 – 5.

      [18] Kukoba A.T. (2000), Hidropryvidnyi rozchynonasos podviinoi dii. Dissertation, 142.

      [19] Letskiy E. (1977) Planirovanie eksperimenta v issledovanii tehnologicheskih protsessov. M.: Mir, 552.

  • Downloads

  • How to Cite

    Korobko, B., Zadvorkin, D., & Vasyliev, I. (2018). Energy Efficiency of a Hydraulically Actuated Plastering Machine. International Journal of Engineering & Technology, 7(3.2), 203-208. https://doi.org/10.14419/ijet.v7i3.2.14403