Strength Design of Compressed Reinforced Concrete Elements by Deformation Method Based on Extreme Criterion

  • Authors

    • Oleksandr Shkurupiy
    • Dmytro Lazariev
    • Yurii Davydenko
    2018-06-20
    https://doi.org/10.14419/ijet.v7i3.2.14430
  • bearing capacity, deformation model, strength, the extreme criterion, ultimate strain.
  • Investigations of the normal sections strength of compressed elements using a deformation method were performed. The shape of the section, the class of concrete and the percentage of reinforcement were taken into account when performing analytical calculations. Analytical, numerical, optimization techniques etc. were used for solving of this task. The results of the analytical calculations and the data of the experimental studies were compared.

     

     
  • References

    1. [1] Mitrofanov V., Shkurupij A., Mitrofanov B., Lazarev D., O vliyanii formy normal'nogo secheniya na predel'nuyu deformaciyu betona szhatoj zony, Zbirnyk naukovykh prats (haluzeve mashynobuduvannia, budivnytstvo), Poltava: PoltNTU, Vol. 15, (2005), pp. 89-94.

      [2] Mitrofanov V., Prakticheskoe primenenie deformacionnoj modeli s ehkstremal'nym kriteriem prochnosti zhelezobetonnyh ehlementov, Kommunal'noe hozyajstvo gorodov. Seriya: Arhitektura i tekhnicheskie nauki, Kyiv: Tekhnika, Vol. 60, (2004), pp. 29-48.

      [3] Mytrofanov V., Shkurupii A., Lazariev D., Mytrofanov B., Vplyv mitsnosti betonu ta kilkosti armatury na hranychni kharakterystyky normalnoho pererizu zalizobetonnykh elementiv, Resursoekonomni materialy, konstruktsii, budivli ta sporudy: Zbirnyk naukovykh prats, Rivne: NUVHP, Vol. 12, (2005), pp. 208-217.

      [4] Noghabai K., Beams of fibrous concrete in shear and bending: Experiment and model. ASCE J. Struct. Eng., Vol. 126, (2000), pp. 243-251, doi: 10.1061/(ASCE)0733-9445(2000)126:2(243).

      [5] Hwang J.-H., Lee D.H., Ju H., Kim K.S., Seo S.-Y., Kang J.-W., Shear behavior models of steel fiber reinforced concrete beams modifying softened truss model approaches. Materials, Vol. 6, (2013), pp. 4847-4867. doi: 10.3390/ma6104847.

      [6] Ezeldin A.S., Balaguru P.N., Normal and high strength fiber reinforced concrete under compression. ASCE J. Mater. Civil Eng., Vol. 4, (1992), pp. 415-429. doi: 10.1061/(ASCE)0899-1561(1992)4:4(415).

      [7] Mansur M.A., Chin M.S., Wee T.H., Stress-strain relationship of high-strength fiber concrete in compression. ASCE J. Mater. Civil Eng., Vol. 11, (1999), pp. 21-29. doi: 10.1061/(ASCE)0899-1561(1999)11:1(21).

      [8] Nataraja M., Dhang N., Gupta A., Stress-strain curves for steel-fiber reinforced concrete under compression. Cement Concr. Compos., Vol. 21, (1999), pp. 383-390. doi: 10.1016/S0958-9465(99)00021-9.

      [9] Bencardino F., Rizzuti L., Spadea G., Swamy R.N., Stress-strain behavior of steel fiber-reinforced concrete in compression. J. Mater. Civil Eng., Vol. 20, (2008), pp. 255-263. doi: 10.1061/(ASCE)0899-1561(2008)20:3(255).

      [10] Practical design of reinforced and prestressed concrete structures based on the CEB – FIP mode code (MC 78), London: Thomas Telford Limited, (1984), 36 p.

      [11] CEB – FIP Eurocode 2: Design of Concrete Structures. Part 1: General Rules and Rules for Buildings, ENV 1992 –1-1, Brussels: CEN, (1991), 253 p.

      [12] Holand I., Strength Concrete in Model Code 90. 5th Int. Symp. on Utilization of HS/HP Concrete, 20-24 June 1999, Sandefjord, Norway. Procedures, Vol. 1, (1999), pp. 362-367.

      [13] Minu M., Matematicheskoe programmirovanie: teoriya i algoritmy, Perevod s francuzskogo, Moskva: Nauka, (1990), 488 s.

      [14] Karpenko N., Muhamediev T., Ishodnyie i transformirovannyie diagrammyi deformirovaniya betona i armaturyi, Napryazhenno-deformirovannoe sostoyanie betonnyih i zhelezobetonnyih konstruktsiy: Sbornik nauchnyih trudov, Moskva: NIIZhB Gosstroya SSSR, (1986), pp. 7-25.

      [15] Shkurupii O., Babych Ye., Analitychne vyznachennia fizyko-mekhanichnykh kharakterystyk betonu, Resursoekonomni materialy, konstruktsii, budivli ta sporudy: Zbirnyk naukovykh prats, Rivne: NUVHP, Vol. 21, (2011), pp. 401-407.

      [16] Takeuti A., de Hanai J., Strength and Ductility of Reinforced Strength Concrete Columns Strengthened with High-Performance Concrete Jackets. 5-th Int. Symp. on Utilization of HS/HP Concrete 20-24 June 1999, Sandefjord, Norway, Proceedings, Vol. 1, (1999), pp. 646-655.

      [17] Kudryavcev A., Dovgalyuk V., Vilkov K., Prochnost' i treshchinostojkost' kolonn karkasnyh zdanij serii II-04, Issledovanie konstrukcij iz betonov na poristyh zapolnitelyah: Sbornik nauchnyh trudov NIIZHB Gosstroya SSSR, Moskva: Strojizdat, (1981), pp. 36-51.

      [18] DBN V.2.6.-98:2009. Betonni ta zalizobetonni konstruktsii. Osnovni polozhennia, Kyiv: Minrehionbud Ukrainy, 2011: 71 p.

      [19] Weiss W. J., Guler K., Shah S. P., An Experimental Investigation to Determine the Influence of Size on the Flexural Behavior of High Strength Reinforced Concrete Beams. 5-th Int. Symp. on Utilization of HS/HP Concrete. 20-24 June 1999, Sandefjord, Norway. Proc., Vol. 2, (1999), pp. 709-718.

  • Downloads

  • How to Cite

    Shkurupiy, O., Lazariev, D., & Davydenko, Y. (2018). Strength Design of Compressed Reinforced Concrete Elements by Deformation Method Based on Extreme Criterion. International Journal of Engineering & Technology, 7(3.2), 334-338. https://doi.org/10.14419/ijet.v7i3.2.14430