Standardization of Required Level Probability of No-Failure Operation of the Building Envelopes by the Criterion of Total Thermal Resistance

  • Authors

    • Volodymyr Semko
    • Maryna Leshchenko
    • Oleksandra Cherednikova
    2018-06-20
    https://doi.org/10.14419/ijet.v7i3.2.14557
  • building envelope, reliability, total thermal resistance.
  • The paper provides analysis of the state of the building envelope thermal reliability issue in Ukraine. It has been found that ensuring the reliability of the building envelope results only in economic losses and is not related to human losses, and therefore the question of normalization of no-failure performance probability of the construction upon the criterion of insufficient value of the reduced total thermal resistance is purely economic. The paper develops normalization of the required level of building envelope no-failure performance probability upon the criterion of reduced total thermal resistance. The suggested method of the required level standardization of building envelope no-failure performance probability upon the criterion of insufficient value of the reduced total thermal resistance of building envelope is proposed for the developers of normative documents, state standards, company standards or technical specifications. Designers should use only the calculated and average values of the minimum permissible thermal resistance, specified in the above-mentioned documents.

     

     

  • References

    1. [1] Raizer V. D. (1986), Metody teorii nadezhnosti v zadachah normirovaniya raschetnyh parametrov stroitelnyh konstruktsyi. M.: Stroiizdat, 192 p.

      [2] Kliukas R., Kudzys A., Probabilistic durability prediction of existing building elements. Journal of Civil Engineering and Management. Vol. 23, №1, (2004), pp. 107–112, http://dx.doi.org/10.1080/13923730.2004.9636294

      [3] Fareniuk H. H. Metodolohichni aspekty zabezpechennia enerhoefektyvnosti ta teplovoi nadiinosti budynkiv. Stroitel'stvo, materialovedenie, mashinostroenie : collection of scientific papers. Dnipropetrovsk : HVUZ PSACEA. Issue 50, (2009), pp. 593–597.

      [4] Pashynskyi V. A., Plotnikov O. A., Kariuk A. M. Metodyka otsiniuvannia teplovoi nadiinosti stin za kryteriiem teplovytrat. Multiuniversity collection of papers «Naukovi notatky». Lutsk. Issue 45, (2014), pp. 417–423.

      [5] Pichuhin S. F., Semko O. V. Imovirnist teplovoi vidmovy ohorodzhuvalnykh konstruktsii iz stalevykh kholodnoformovanykh elementiv za kryteriiem znyzhennia lokalnykh znachen temperatur. Collection of scientific papers of Ukrainian state university of railway transport. Kharkiv. Issue 160, (2016), pp. 25–34.

      [6] Semko V. O. Metodyka vyznachennia imovirnosti teplovoi vidmovy ohorodzhuvalnykh konstruktsii iz stalevykh kholodnoformovanykh elementiv za teplotekhnichnymy pokaznykamy. Stroitel'stvo, materialovedenie, mashinostroenie: collection of scientific papers. Dnepr : PSACEA. Issue. 91, (2016), pp. 140–147.

      [7] Semko V. O., LeshÑhenko M. V., Rud A. G. Experimental Study of Variability of Thermal Conductivity of Insulation Materials. Collection of scientific papers. Series: Haluzeve mashynobuduvannia, budivnytstvo. Poltava. Issue. 1 (46), (2016), pp. 60–67.

      [8] Leshchenko M. V., Semko V. O. Thermal characteristics of the external walling made of cold-formed steel studs and polystyrene concrete. Magazine of Civil Engineering. № 8, (2015), pp. 44–55. https://doi.org/10.5862/MCE.60.6

      [9] Pichugin S. F., Semko V. O., LeshÑhenko M. V. Probabilistic Analysis of Thermal Performance of the Wall from Light-Gauge Thin-Walled Steel Structures. Collection of scientific papers. Series: Haluzeve mashynobuduvannia, budivnytstvo. Poltava. Issue 1 (48), (2017), pp. 144–155.

      [10] Garay R., Uriarte A., Apraiz I. Performance assessment of thermal bridge elements into a full scale experimental study of a building façade. Energy and buildings. № 85, (2014), pp. 579–591. https://doi.org/10.1016/j.enbuild.2014.09.024

      [11] Sareh Naji, Oğuz Cem Çelik, U. Johnson Alengaram, Mohd Zamin Jumaat, Shahaboddin Shamshirband. Structure, energy and cost efficiency evaluation of three different lightweight construction systems used in low-rise residential buildings. Energy and buildings. № 84, (2014), pp. 727–739.

      https://doi.org/10.1016/j.enbuild.2014.08.009

      [12] Simo Ilomets, Kalle Kuusk, Leena Paap, Endrik Arumägi & Targo Kalamees, Impact of linear thermal bridges on thermal transmittance of renovated apartment buildings, Journal of Civil Engineering and Management. Vol. 10, №2, (2017), pp. 96–104, https://doi.org/10.3846/13923730.2014.976259

      [13] Semko O., Yurin O., Avramenko Yu., Skliarenko S. Thermophysical aspects of cold roof spaces. MATEC Web of Conferences. Vol. 116, (2017), р. 02030.

      https://doi.org/10.1051/matecconf/201711602030

      [14] Yurin O., Galinska T. Study of heat shielding qualities of brick wall angle with additional insulation located on the outside fences. MATEC Web of Conferences. Vol. 116, (2017), р. 02039. https://doi.org/10.1051/matecconf/201711602039

      [15] Pavlenko A., Koshlak H. Design of processes of thermal bloating of silicates. Metallurgical and Mining Industry. №2, (2015), pp. 118–122.

      [16] Olena Filonenko. Definition of the parameters of thermal insulation in the zone of building foundation according to the ground freezing depth. Energy Efficiency. Vol. 11, Issue 3, (2017), pp. 603–626.

      https://doi.org/10.1007/s12053-017-9600-x

      [17] Semko V. O. Stalevi kholodnoformovani tonkostinni konstruktsii. Poltava, (2017), 325 Ñ. ISBN: 978-966-182-460-6.

      [18] Piskunov V. G., Gorik A. V., Cherednikov V. N. Modeling of Transverse Shears of Piecewise Homogeneous Composite Bars Using an Iterative Process with Account of Tangential Loads. Mechanics of Composite Materials. Vol. 36, №6, (2000), pp. 445–452.https://doi.org/10.1023/A:1006798314569


  • Downloads

  • How to Cite

    Semko, V., Leshchenko, M., & Cherednikova, O. (2018). Standardization of Required Level Probability of No-Failure Operation of the Building Envelopes by the Criterion of Total Thermal Resistance. International Journal of Engineering & Technology, 7(3.2), 382-387. https://doi.org/10.14419/ijet.v7i3.2.14557