Adaptive Neuro Fuzzy Inference System for Prediction: a Study Approach

Authors

  • Syafrida Hafni Sahir
  • Kersna Minan
  • S Samsudin
  • Ilka Zufria
  • Robbi Rahim

DOI:

https://doi.org/10.14419/ijet.v7i2.12.14688

Keywords:

ANFIS, Fuzzy, Prediction, Neuro Fuzzy, Inference System

Abstract

Prediction is a process of systematically estimating something that is most likely to happen in the future, based on past information and current information held, so that the difference between something that happens and the expected result can be minimized. Prediction does not have to give a definite answer to the event that will occur, but trying to find the answer as closely as possible that will happen. The ANFIS (Adaptive Neuro Fuzzy Inference System) method is a functionally similar method to the fuzzy rule base of the Sugeno model, as well as the neural network with radial functions with few restrictions that can be used to predict certain data.

 

 

References

[1] R. Rahim et al., “C4.5 Classification Data Mining for Inventory Control,†Int. J. Eng. Technol., vol. 7, no. 2.3, 2018.

[2] M. Mesran et al., “Expert system for disease risk based on lifestyle with Fuzzy Mamdani,†Int. J. Eng. Technol., vol. 7, 2018.

[3] M. D. T. P. Nasution et al., “Decision support rating system with Analytical Hierarchy Process method,†Int. J. Eng. Technol., vol. 7, 2018.

[4] L. Liyan, “The Impact of Information Technology on Accounting Theory , Accounting Profession , and Chinese Accounting Education Profession , and Chinese Accounting Education,†Wuhan Int. Conf. E-bus. 2013 Proc., 2013.

[5] W. Yu and R. Ramanathan, “Effects of business environment on international retail operations: case study evidence from China,†Int. J. Retail Distrib. Manag., vol. 40, no. 3, pp. 218–234, 2012.

[6] D. Napitupulu, M. Syafrullah, R. Rahim, A. Amar, and Y. Sucahyo, “Content validity of critical success factors for e-Government implementation in Indonesia,†IOP Conf. Ser. Mater. Sci. Eng., vol. 352, p. 012058, May 2018.

[7] A. Alesyanti, R. Ramlan, H. Hartono, and R. Rahim, “Ethical decision support system based on hermeneutic view focus on social justice,†Int. J. Eng. Technol., vol. 7, no. 2.9, pp. 74–77, 2018.

[8] D. Napitupulu, M. Syafrullah, R. Rahim, D. Abdullah, and M. Setiawan, “Analysis of user readiness toward ICT usage at small medium enterprise in south tangerang,†J. Phys. Conf. Ser., vol. 1007, no. 1, p. 012042, Apr. 2018.

[9] T. Suryanto, R. Rahim, and A. S. Ahmar, “Employee Recruitment Fraud Prevention with the Implementation of Decision Support System,†J. Phys. Conf. Ser., vol. 1028, no. 1, p. 012055, Jun. 2018.

[10] A. Yanie et al., “Web Based Application for Decision Support System with ELECTRE Method,†J. Phys. Conf. Ser., vol. 1028, no. 1, p. 012054, Jun. 2018.

[11] R. Rahim et al., “TOPSIS Method Application for Decision Support System in Internal Control for Selecting Best Employees,†J. Phys. Conf. Ser., vol. 1028, no. 1, p. 012052, Jun. 2018.

[12] K. Adiyarta, D. Napitupulu, H. Nurdianto, R. Rahim, and A. Ahmar, “User acceptance of E-Government Services Based on TRAM model,†IOP Conf. Ser. Mater. Sci. Eng., vol. 352, p. 012057, May 2018.

[13] Y. Rossanty, D. Hasibuan, J. Napitupulu, M. Dharma, and T. Putra, “Composite performance index as decision support method for multi case problem,†Int. J. Eng. Technol., vol. 7, no. 2.9, pp. 33–36, 2018.

[14] A. Indahingwati, M. Barid, N. Wajdi, D. E. Susilo, N. Kurniasih, and R. Rahim, “Comparison Analysis of TOPSIS and Fuzzy Logic Methods On Fertilizer Selection,†Int. J. Eng. Technol., vol. 7, no. 2.3, pp. 109–114, 2018.

[15] A. Pranolo, F. I. ammurrohman, Y. Hendriana, and D. Octaviani, “A Decision Support System using ANFIS to Determine the Major of Prospective Students in A Vocational School of Indonesia,†Int. J. Comput. Trends Technol., vol. 27, no. 2, pp. 100–105, Sep. 2015.

[16] M. Yousefi, D. Hooshyar, A. Remezani, K. S. M. Sahari, W. Khaksar, and F. B. I. Alnaimi, “Short-term wind speed forecasting by an adaptive network-based fuzzy inference system (ANFIS): an attempt towards an ensemble forecasting method,†Int. J. Adv. Intell. Informatics, vol. 1, no. 3, pp. 140–149, Dec. 2015.

[17] M. Alsamhi, S. H., Ansari, M., Hebah, M., Ahmed, A., Hatem, A., & Alasali, “Adaptive Handoff Prediction and Appreciate Decision Using ANFIS between Terrestrial Communication and HAP.â€

[18] L. Suganthi, S. Iniyan, and A. A. Samuel, “Applications of fuzzy logic in renewable energy systems - A review,†Renewable and Sustainable Energy Reviews, vol. 48. pp. 585–607, 2015.

[19] A. S. Ahmar et al., “Implementation of the ARIMA(p,d,q) method to forecasting CPI Data using forecast package in R Software,†J. Phys. Conf. Ser., vol. 1028, no. 1, p. 012189, Jun. 2018.

[20] A. S. Ahmar, D. Napitupulu, R. Rahim, R. Hidayat, Y. Sonatha, and M. Azmi, “Using K-Means Clustering to Cluster Provinces in Indonesia,†J. Phys. Conf. Ser., vol. 1028, no. 1, p. 012006, Jun. 2018.

[21] S. H. Sahir, R. Rosmawati, and R. Rahim, “Fuzzy model tahani as a decision support system for selection computer tablet,†Int. J. Eng. Technol., vol. 7, no. 2.9, pp. 61–65, 2018.

[22] A. S. Ahmar et al., “Modeling Data Containing Outliers using ARIMA Additive Outlier (ARIMA-AO),†J. Phys. Conf. Ser., vol. 954, no. 1, 2018.

[23] W. Sulandari, S. Subanar, S. Suhartono, and H. Utami, “Forecasting electricity load demand using hybrid exponential smoothing-artificial neural network model,†Int. J. Adv. Intell. Informatics, vol. 2, no. 3, pp. 131–139, Nov. 2016.

[24] L. Guo, D. Rivero, J. A. Seoane, and A. Pazos, “Classification of EEG signals using relative wavelet energy and artificial neural networks,†in Proceedings of the first ACM/SIGEVO Summit on Genetic and Evolutionary Computation - GEC ’09, 2009.

[25] S. Narad and P. Chavan, “Cascade Forward Back-propagation Neural Network Based Group Authentication Using (n, n) Secret Sharing Scheme,†Procedia Comput. Sci., vol. 78, no. December 2015, pp. 185–191, 2016.

[26] Haviluddin, F. Agus, M. Azhari, and A. S. Ahmar, “Artificial Neural Network Optimized Approach for Improving Spatial Cluster Quality of Land Value Zone,†Int. J. Eng. Technol., vol. 7, no. 2.2, pp. 80–83, 2018.

[27] Hartono, O. S. Sitompul, E. B. Nababan, Tulus, D. Abdullah, and A. S. Ahmar, “A new diversity technique for imbalance learning ensembles,†Int. J. Eng. Technol., vol. 7, no. 2, pp. 478–483, 2018.

[28] Uca, E. Toriman, O. Jaafar, R. Maru, A. Arfan, and A. S. Ahmar, “Daily Suspended Sediment Discharge Prediction Using Multiple Linear Regression and Artificial Neural Network,†J. Phys. Conf. Ser., vol. 954, no. 1, 2018.

[29] Surahman, A. Viddy, A. F. O. Gaffar, Haviluddin, and A. S. Ahmar, “Selection of the best supply chain strategy using fuzzy based decision model,†Int. J. Eng. Technol., vol. 7, no. 2.2, 2018.

[30] P. harliana and R. Rahim, “Comparative Analysis of Membership Function on Mamdani Fuzzy Inference System for Decision Making,†J. Phys. Conf. Ser., vol. 930, no. 1, p. 012029, Dec. 2017.

[31] U. Khair, H. Fahmi, S. Al Hakim, and R. Rahim, “Forecasting Error Calculation with Mean Absolute Deviation and Mean Absolute Percentage Error,†J. Phys. Conf. Ser., vol. 930, no. 1, p. 012002, Dec. 2017.

[32] H. Haviluddin and A. Jawahir, “Comparing of ARIMA and RBFNN for short-term forecasting,†Int. J. Adv. Intell. Informatics, vol. 1, no. 1, pp. 15–22, Mar. 2015.

[33] I. Güler and E. D. Übeyli, “Adaptive neuro-fuzzy inference system for classification of EEG signals using wavelet coefficients,†J. Neurosci. Methods, 2005.

Downloads