The Effects of Sn-Doping on a-Fe2O3 Nanostructures Properties

 
 
 
  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract


    In this study, undoped and Sn-doped hematite (α-Fe2O3) nanostructures with variation of Sn (0.5, 1, 2, 3 at. %) were deposited on fluorine doped tin oxide (FTO) coated glass substrate using sonicated immersion method. The effect of Sn-dopant on structural and crystallinity properties were investigated by characterizing FESEM and XRD respectively, while the optical properties were measured by UV-Vis-NIR spectrometer. The surface morphologies from FESEM have shown that the hematite nanostructures were grown uniformly in all samples. However, as the dopant atomic percentage increases, the amount of hematite nanostructure being grown on the FTO decreases. Results demonstrated that the amount of Sn-doping was undoubtedly influence the structural, optical and electrical properties of hematite nanostructures.

     

     


  • Keywords


    Hematite, hematite nanostructure, Sn-doped α-Fe2O3, sonicated immersion

  • References


    1. [1] A. Subramanian et al., “Effect of tetravalent dopants on hematite nanostructure for enhanced photoelectrochemical water splitting,” Appl. Surf. Sci., vol. 427, pp. 1203–1212, 2018.

      [2] A. Annamalai et al., “Fabrication of superior α-Fe2O3 nanorod photoanodes through ex-situ Sn-doping for solar water splitting,” Sol. Energy Mater. Sol. Cells, vol. 144, pp. 247–255, 2016.

      [3] Q. Meng, Z. Wang, X. Chai, Z. Weng, R. Ding, and L. Dong, “Fabrication of hematite (α-Fe2O3) nanoparticles using electrochemical deposition,” Appl. Surf. Sci., vol. 368, pp. 303–308, 2016.

      [4] E. L. Tsege, T. S. Atabaev, M. A. Hossain, D. Lee, H. K. Kim, and Y. H. Hwang, “Cu-doped flower-like hematite nanostructures for efficient water splitting applications,” J. Phys. Chem. Solids, vol. 98, pp. 283–289, 2016.

      [5] B. Lucas-granados, R. Sánchez-tovar, R. M. Fernández-domene, and J. García-antón, “Applied Surface Science Controlled hydrodynamic conditions on the formation of iron oxide nanostructures synthesized by electrochemical anodization : Effect of the electrode rotation speed,” Appl. Surf. Sci., vol. 392, pp. 503–513, 2017.

      [6] M. Orlandi et al., “On the effect of Sn-doping in hematite anodes for oxygen evolution,” Electrochim. Acta, vol. 214, pp. 345–353, 2016.

      [7] M. Balogun et al., “High power density nitridated hematite (α-Fe2O3) nanorods as anode for high-performance flexible lithium ion batteries,” J. Power Sources, vol. 308, pp. 7–17, Mar. 2016.

      [8] N. Pariona, K. I. Camacho-Aguilar, R. Ramos-González, A. I. Martinez, M. Herrera-Trejo, and E. Baggio-Saitovitch, “Magnetic and structural properties of ferrihydrite/hematite nanocomposites,” J. Magn. Magn. Mater., vol. 406, pp. 221–227, 2016.

      [9] F. L. Souza, K. P. Lopes, P. A. P. Nascente, and E. R. Leite, “Nanostructured hematite thin films produced by spin-coating deposition solution: Application in water splitting,” Sol. Energy Mater. Sol. Cells, vol. 93, no. 3, pp. 362–368, 2009.

      [10] M. C. Huang, T. Wang, C. C. Wu, W. S. Chang, J. C. Lin, and T. H. Yen, “The optical, structural and photoelectrochemical characteristics of porous hematite hollow spheres prepared by DC magnetron sputtering process via polystyrene spheres template,” Ceram. Int., vol. 40, no. 7 PART B, pp. 10537–10544, 2014.

      [11] R. Rajendran, Z. Yaakob, M. Pudukudy, M. S. A. Rahaman, and K. Sopian, “Photoelectrochemical water splitting performance of vertically aligned hematite nanoflakes deposited on FTO by a hydrothermal method,” J. Alloys Compd., vol. 608, pp. 207–212, 2014.

      [12] A. Pu, J. Deng, Y. Hao, X. Sun, and J. Zhong, “Thickness effect of hematite nanostructures prepared by hydrothermal method for solar water splitting,” Appl. Surf. Sci., vol. 320, pp. 213–217, 2014.

      [13] L. Chen, H. Xu, L. Li, F. Wu, J. Yang, and Y. Qian, “A comparative study of lithium-storage performances of hematite: Nanotubes vs. nanorods,” J. Power Sources, vol. 245, pp. 429–435, 2014.

      [14] S. Grigorescu et al., “Thermal air oxidation of Fe: Rapid hematite nanowire growth and photoelectrochemical water splitting performance,” Electrochem. commun., vol. 23, no. 1, pp. 59–62, 2012.

      [15] P. S. Bassi, R. P. Antony, P. P. Boix, Y. Fang, J. Barber, and L. H. Wong, “Crystalline Fe2O3/Fe2TiO5 heterojunction nanorods with efficient charge separation and hole injection as photoanode for solar water oxidation,” Nano Energy, vol. 22, pp. 310–318, 2016.

      [16] M. H. Mamat et al., “Fabrication of Intrinsic Zinc Oxide-Coated , Aluminium-Doped Zinc Oxide Nanorod Array-Based Ultraviolet Photoconductive Sensors,” no. February 2016, pp. 6–8, 2015.

      [17] A. S. Ismail et al., “Fabrication of hierarchical Sn-doped ZnO nanorod arrays through sonicated sol−gel immersion for room temperature, resistive-type humidity sensor applications,” Ceram. Int., 2016.

      [18] G. Neri, a. Bonavita, S. Galvagno, N. Donato, and a. Caddemi, “Electrical characterization of Fe2O3 humidity sensors doped with Li+, Zn2+ and Au3+ ions,” Sensors Actuators B Chem., vol. 111–112, pp. 71–77, 2005.

      [19] K. D. Malviya, H. Dotan, D. Shlenkevich, A. Tsyganok, H. Mor, and A. Rothschild, “Systematic comparison of different dopants in thin film hematite (α-Fe2O3) photoanodes for solar water splitting,” J. Mater. Chem. A Mater. energy Sustain., vol. 4, pp. 3091–3099, 2016.

      [20] A. S. Afify et al., “Studying the effect of doping metal ions onto a crystalline hematite-based humidity sensor for environmental control,” Bulg. Chem. Commun., vol. 48, no. 2, pp. 297–302, 2016.

      [21] H. J. Song, Y. Sun, and X. H. Jia, “Hydrothermal synthesis, growth mechanism and gas sensing properties of Zn-doped α-Fe2O3 microcubes,” Ceram. Int., vol. 41, no. 10, pp. 13224–13231, 2015.

      [22] K. Bindu, K. M. Ajith, and H. S. Nagaraja, “Electrical, dielectric and magnetic properties of Sn-doped hematite (a-SnxFe2-xO3) nanoplates synthesized by microwave-assisted method,” J. Alloys Compd., vol. 735, pp. 847–854, 2018.


 

View

Download

Article ID: 15925
 
DOI: 10.14419/ijet.v7i3.11.15925




Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.