Understanding the Electronic Transition of Normal Spinel Structure of Co3O4 Using GGA+U Calculations

  • Authors

    • N H.M Zaki
    • M Mustaffa
    • M F.M. Taib
    • O H.Hassan
    • M Z.A.Yahya
    • A M.M.Ali
    2018-07-21
    https://doi.org/10.14419/ijet.v7i3.11.15943
  • Generalized Gradient Approximation (GGA), Hubbard U, Co3O4, Electronic Properties, Optical Properties
  • Abstract

    The normal spinel cobalt oxide Co3O4 is considered as a magnetic semiconducting material comprising of cobalt ions with two oxidation states of Co2+ and Co3+. Density Functional Theory (DFT) calculation are employed to generate the structural, electronic and optical properties using Generalized Gradient Approximation (GGA) function. The Perdew-Burke-Ernzerh for solids (PBEsol) exchange-correlation functional approach successfully predict the semiconductor behaviour of Co3O4 but severely underestimates the band gap in relation to the experimental value. The GGA+U is performed in order to treat the Co-3d states and achieve the band gap of 1.26eV which agrees with the experimental results. For optical studies, here we unveil the predicted three assumed electron transition occurring in Co3O4 for O(2p)→Co2+(t2g), O(2p)→Co3+(eg) and Co3+(t2g)→Co2+(t2g).

     

  • References

    1. [1] L. D. Kadam and P. S. Patil, “Thickness-dependent properties of sprayed cobalt oxide thin films,†Mater. Chem. Phys., vol. 68, no. 1–3, pp. 225–232, 2001.

      [2] J. Wöllenstein, M. Burgmair, G. Plescher, T. Sulima, J. Hildenbrand, H. Böttner, and I. Eisele,

      [3] “Cobalt oxide based gas sensors on silicon substrate for operation at low temperatures,â€

      [4] Sensors Actuators, B Chem., vol. 93, no. 1–3, pp. 442–448, 2003.

      [5] B.-M. Chae, E.-S. Oh, and Y.-K. Lee, “Conversion mechanisms of cobalt oxide anode for Li-ion battery: In situ X-ray absorption fine structure studies,†J. Power Sources, vol. 274, pp. 748–754, 2015.

      [6] S. Deng, X. Xiao, G. Chen, L. Wang, and Y. Wang, “Cd doped porous Co3O4 nanosheets as electrode material for high performance supercapacitor application,†Electrochim. Acta, vol. 196, pp. 316–327, 2016.

      [7] M. B. Durukan, R. Yuksel, and H. E. Unalan, “Cobalt Oxide Nanoflakes on Single Walled Carbon Nanotube Thin Films for Supercapacitor Electrodes,†Electrochim. Acta, vol. 222, pp. 1475–1482, 2016.

      [8] W. L. Roth, “The magnetic structure of Co3O4,†J. Phys. Chem. Solids, vol. 25, no. 1, pp. 1–10, 1964.

      [9] S. A. Makhlouf, Z. H. Bakr, K. I. Aly, and M. S. Moustafa, “Structural, electrical and optical properties of Co3O4 nanoparticles,†Superlattices Microstruct., vol. 64, pp. 107–117, 2013.

      [10] L. Bai, M. Pravica, Y. Zhao, C. Park, Y. Meng, S. V Sinogeikin, and G. Shen, “Charge transfer in spinel Co 3 O 4 at high pressures,†J. Phys. Condens. Matter, vol. 24, no. 43, p. 435401, 2012.

      1. F. Lima, “Interpretation of the optical absorption spectrum of Co3O4 with normal spinel structure from first principles calculations,†J. Phys. Chem. Solids, vol. 75, no. 1, pp. 148–152, 2014.

      [11] K. J. Kim and Y. R. Park, “Optical investigation of charge-transfer transitions in spinel

      [12] Co3O4,†Solid State Commun., vol. 127, no. 1, pp. 25–28, 2003.

      [13] X.-L. Xu, Z.-H. Chen, Y. Li, W.-K. Chen, and J.-Q. Li, “Bulk and surface properties of spinel Co3O4 by density functional calculations,†Surf. Sci., vol. 603, no. 4, pp. 653–658, 2009.

      [14] S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. J. Probert, K. Refson, and M. C.

      [15] Payne, “First principles methods using CASTEP,†Zeitschrift für Krist., vol. 220, no. 5–6– 2005, pp. 567–570, 2005.

      [16] D. M. Ceperley and B. J. Alder, “Ground state of the electron gas by a stochastic method,â€

      [17] Phys. Rev. Lett., vol. 45, no. 7, pp. 566–569, 1980.

      [18] J. P. Perdew and A. Zunger, “Self-interaction correction to density-functional approximations for many-electron systems,†Phys. Rev. B, vol. 23, no. 10, pp. 5048–5079, 1981.

      [19] J. P. Perdew and Y. Wang, “Accurate and Simple Analytic Representation of the Electron-Gas Correlation-Energy,†Phys. Rev. B, vol. 45, no. 23, pp. 13244–13249, 1992.

      [20] J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized Gradient Approximation Made

      [21] Simple,†Phys. Rev. Lett., vol. 77, no. 18, pp. 3865–3868, 1996.

      [22] J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X.

      [23] Zhou, and K. Burke, “Generalized gradient approximation for solids and their surfaces,†vol.

      [24] 136406, no. April, pp. 1–4, 2007.

      1. Louardi, A. Rmili, F. Ouachtari, A. Bouaoud, B. Elidrissi, and H. Erguig, “Characterization of cobalt oxide thin films prepared by a facile spray pyrolysis technique using perfume atomizer,†J. Alloys Compd., vol. 509, no. 37, pp. 9183–9189, 2011.
      2. S. Transactions, R. Manigandan, K. Giribabu, R. Suresh, L. Vijayalakshmi, A. Stephen, V.

      [25] Narayanan, G. Campus, and G. Campus, “Cobalt Oxide Nanoparticles : Characterization and its Electrocatalytic Activity towards Nitrobenzene †,†vol. 2, pp. 47–50, 2013.

      [26] J. Chen, X. Wu, and A. Selloni, “Electronic Structure and Bonding properties of cobalt oxide in the spinel structure,†Phys. Rev. B, vol. 83, pp. 245204–12, 2011.

      1. Walsh, S.-H. Wei, Y. Yan, M. M. Al-Jassim, and J. A. Turner, “Structural, magnetic, and electronic properties of the Co-Fe-Al oxide spinel system: Density-functional theory calculations,†Phys. Rev. B, vol. 76, no. 16, p. 165119, 2007.

      [27] V. R. Shinde, S. B. Mahadik, T. P. Gujar, and C. D. Lokhande, “Supercapacitive cobalt oxide (Co3O4) thin films by spray pyrolysis,†Appl. Surf. Sci., vol. 252, no. 20, pp. 7487–7492, 2006.

      [28] V. Singh and D. T. Major, “Electronic Structure and Bonding in Co-Based Single and Mixed Valence Oxides: A Quantum Chemical Perspective,†Inorg. Chem., vol. 55, no. 7, pp. 3307– 3315, 2016.

      1. F. Lima, “Journal of Physics and Chemistry of Solids Interpretation of the optical absorption spectrum of Co 3 O 4 with normal spinel structure from fi rst principles calculations,†J. Phys. Chem. Solids, vol. 75, no. 1, pp. 148–152, 2014.

      [29] J. Chen, X. Wu, and A. Selloni, “Electronic Structure and Bonding properties of cobalt oxide in the spinel structure,†Phys. Rev. B, vol. 83, pp. 245204–12, 2011.

      1. Bouhemadou, F. Djabi, and R. Khenata, “First principles study of structural, elastic, electronic and optical properties of the cubic perovskite BaHfO3,†Phys. Lett. A, vol. 372, no. 24, pp. 4527–4531, 2008.

      [30] L. Qiao, H. Y. Xiao, H. M. Meyer, J. N. Sun, C. M. Rouleau, A. A. Puretzky, D. B. Geohegan,

      [31] N. Ivanov, M. Yoon, W. J. Weber, and M. D. Biegalski, “Nature of the band gap and origin of the electro-/photo-activity of Co3O4,†J. Mater. Chem. C, vol. 1, no. 31, pp. 4628–4633, 2013.

  • Downloads

  • How to Cite

    H.M Zaki, N., Mustaffa, M., F.M. Taib, M., H.Hassan, O., Z.A.Yahya, M., & M.M.Ali, A. (2018). Understanding the Electronic Transition of Normal Spinel Structure of Co3O4 Using GGA+U Calculations. International Journal of Engineering & Technology, 7(3.11), 121-125. https://doi.org/10.14419/ijet.v7i3.11.15943

    Received date: 2018-07-20

    Accepted date: 2018-07-20

    Published date: 2018-07-21