Simulation Models of the Seawater Greenhouse
-
2018-07-26 https://doi.org/10.14419/ijet.v7i3.4.16190 -
Analytical, numerical, empirical, ANN, Simulation models -
Abstract
In arid climates, extremely high temperatures in the summer and the chronic water scarcity put a firm barrier against agricultural development and sustainability. The SWGH technology is an engineering phenomenon that came to overcome both the constraints particularly in areas where seawater is accessible and/or brackish groundwater is available. It is a greenhouse used to cultivate crops and at the same time produce its own freshwater need. This study aimed to highlight the models that were carried out to simulate the SWGH as a whole or only the dehumidification rate of the SWGH condenser. Four types of simulation models were identified, namely, analytical, numerical, empirical and artificial neural network simulations. The factors affecting the dehumidification rate were also discussed taking into consideration the results from the simulation models.
Â
 -
References
[1] Al-Ismaili A.M. (2003) Modification of a quonset greenhouse to a humidification-dehumidification system: design, construction and pilot testing, Sultan Qaboos University, Muscat, Oman.
[2] Al-Ismaili A.M. (2009) Modelling of a humidification-dehumidification greenhouse in Oman, Cranfield University (United Kingdom), Ann Arbor, UK.
[3] Al-Ismaili A.M., Jayasuriya H. (2016) Seawater Greenhouse in Oman: A Sustainable Technique for Freshwater Conservation and Production. Renewable and Sustainable Energy Reviews 54:653-664.
[4] Al-Ismaili A.M., Jayasuriya H., Al-Mulla Y., Kotagama H. (2018) Empirical model for the condenser of the seawater greenhouse. Chemical Engineering Communications 205. DOI: https://doi.org/10.1080/00986445.2018.1443081.
[5] Alkhalidi A., Zurigat Y., Dawoud B., Aldoss T., Theodordis G. (2010) Performance of a greenhouse desalination condenser: An experimental study, 1st International Nuclear and Renewable Energy Conference (INREC10), Amman. pp. 1-7.
[6] Alkhalidi A., Zurigat Y., Dawoud B., Aldoss T., Theodordis G. (2013) Condenser designs for greenhouse desalination. International Journal of Sustainable Water and Environmental Systems 5:1-6.
[7] Bailey B.J., Raoueche A. (1998) Design and performance aspects of a water producing greenhouse cooled by seawater. Acta Hortic:311-315.
[8] Bourouni K., Chaibi M.T., Al-Taee A. (2011) Water desalination by humidification and dehumidification of air, seawater greenhouse process, Solar energy conservation and photoenergy systems, Encyclopedia of Life Support Systems (EOLSS), available at: http://www.eolss.net/Eolss-sampleAllChapter.aspx [accessed 12 September 2017].
[9] Davies P., Turner K., Paton C. (2004a) Potential of the seawater greenhouse in Middle Eastern climates, International Engineering Conference, Mutah University, Mutah. pp. 523-540.
[10] Davies P.A., Paton C. (2005) The seawater greenhouse in the United Arab Emirates: Thermal modelling and evaluation of design options. Desalination 173:103-111. DOI: 10.1016/j.desal.2004.06.211.
[11] Davies P.A., Paton C. (2006) The Seawater Greenhouse: background, theory and current status. International Journal of Low-Carbon Technologies 1:183-190. DOI: 10.1093/ijlct/1.2.183.
[12] Davies P.A., Turner K., Paton C. (2004b) Potential of the seawater greenhouse in Middle Eastern climates, International Engineering Conference, Mutah
[13] Dawoud B., Zurigat Y.H., Klitzing B., Aldoss T., Theodoridis G. (2006) On the possible techniques to cool the condenser of seawater greenhouses. Desalination 195:119-140. DOI: 10.1016/j.desal.2005.09.038.
[14] Douani M., Tahri T., Abdul-Wahab S.A., Bettahar A., Al-Hinai H., Al-Mulla Y. (2011) Modeling Heat Exchange in the Condenser of a Seawater Greenhouse in Oman. Chemical Engineering Communications 198:1579-1593. DOI: 10.1080/00986445.2011.559560.
[15] Eslamimanesh A., Hatamipour M.S. (2009) Mathematical modeling of a direct contact humidification–dehumidification desalination process. Desalination 237:296-304. DOI: http://dx.doi.org/10.1016/j.desal.2008.01.023.
[16] Ghaffour N., Bundschuh J., Mahmoudi H., Goosen M.F.A. (2015) Renewable energy-driven desalination technologies: A comprehensive review on challenges and potential applications of integrated systems. Desalination 356:94-114. DOI: http://dx.doi.org/10.1016/j.desal.2014.10.024.
[17] Goosen M.F.A., Sablani S.S., Al-Hinai H., Paton C., Shayya W.H. (2001) Humidification-dehumidification desalination: Seawater greenhouse development, IDA World Congress on Desalination and Water Reuse, Manama.
[18] Hajiamiri M., Salehi G.R. (2013) Modeling of the Seawater Greenhouse systems. Life Science Journal 10:353-359.
[19] Kabeel A.E., Almagar A.M. (2013) Seawater greenhouse in desalination and economics, 17th International water technology conference, Istanbul.
[20] Mahmoudi H., Spahis N., Abdul-Wahab S.A., Sablani S.S., Goosen M.F.A. (2010) Improving the performance of a Seawater Greenhouse desalination system by assessment of simulation models for different condensers. Renewable and Sustainable Energy Reviews 14:2182-2188. DOI: 10.1016/j.rser.2010.03.024.
[21] Mahmoudi H., Abdul-Wahab S.A., Goosen M.F.A., Sablani S.S., Perret J., Ouagued A., Spahis N. (2008) Weather data and analysis of hybrid photovoltaic–wind power generation systems adapted to a seawater greenhouse desalination unit designed for arid coastal countries. Desalination 222:119-127. DOI: 10.1016/j.desal.2007.01.135.
[22] Paton C., Davis D., Goosen M.F.A., Sablani S.S. (2001) Seawater greenhouse development for Oman: Thermodynamic modeling and economic analysis, MEDRC Series of R&D Reports (MEDRC Project: 97-AS-005b), Muscat.
[23] Raoueche A. (1997) Seawater greenhouse for arid lands, Cranfield University, Bedford. pp. 42.
[24] Raoueche A., Bailey B. (1997) Performance aspects of a seawater greenhouse, WEDC CONFERENCE, WATER, ENGINEERING AND DEVELOPMENT CENTRE. pp. 182-183.
[25] Raoueche A., Bailey B., Stenning B. (1996) Sensitivity analysis of the seawater greenhouse, 22nd WEDC Conference on reaching the unreached - Challenges for the 21st-Century, New Delhi. pp. 291-294.
[26] Sablani S.S., Goosen M.F.A., Paton C., Shayya W.H., Al-Hinai H. (2003) Simulation of fresh water production using a humidification-dehumidification seawater greenhouse. Desalination 159:283-288. DOI: 10.1016/S0011-9164(03)90080-4.
[27] Salehi G.R., Ahmadpour M., Khoshnazar H. (2011) Modeling of the seawater greenhouse systems, World Renewable Energy Congress, Linkoping, Sweden.
[28] Tahri T., Bettahar A., Douani M. (2013a) Influence of operational parameters in mass condensate flux of condenser of the seawater greenhouse, 16èmes Journées Internationales de Thermique (JITH), Marrakech. pp. 6.
[29] Tahri T., Amoura M., Abdul-Wahab S.A., Bettahar A., Douani M. (2012) Theoretical modeling of the condensation phenomena in the dehumidifier of the seawater greenhouse, ECI 8th International Conference on Boiling and Condensation Heat Transfer, Lausanne. pp. 1-10.
[30] Tahri T., Douani M., Abdul-Wahab S.A., Amoura M., Bettahar A. (2013b) Simulation of the vapor mixture condensation in the condenser of seawater greenhouse using two models. Desalination 317:152-159. DOI: 10.1016/j.desal.2013.02.025.
[31] Tahri T., Abdul-Wahab S.A., Bettahar A., Douani M., Al-Hinai H., Al-Mulla Y. (2009a) Simulation of the condenser of the seawater greenhouse: Part I: Theoretical development. Journal of Thermal Analysis and Calorimetry 96:35-42. DOI: 10.1007/s10973-008-9835-z.
[32] Tahri T., Abdul-Wahab S.A., Bettahar A., Douani M., Al-Hinai H., Al-Mulla Y. (2009b) Desalination of seawater using a humidification-dehumidification seawater greenhouse. Desalination and Water Treatment 12:382-388. DOI: 10.5004/dwt.2009.970.
[33] Tahri T., Abdul-Wahab S.A., Bettahar A., Douani M., Al-Hinai H., Al-Mulla Y. (2009c) Simulation of the condenser of the seawater greenhouse: Part II: Application of the developed theoretical model. Journal of Thermal Analysis and Calorimetry 96:43-47. DOI: 10.1007/s10973-008-9915-0.
[34] Tahri T., Bettahar A., Douani M., Abdul-Wahab S.A., Al-Hinai H., Al-Mulla Y. (2010) Solar desalination of seawater in a green-house: Simulating the effects of condensation and operating parameters (French), VIèmes Journées d’Etudes Techniques, Marrakech.
[35] Yetilmezsoy K., Abdul-Wahab S.A. (2014) A composite desirability function-based modeling approach in predicting mass condensate flux of condenser in seawater greenhouse. Desalination 344:171-180. DOI: 10.1016/j.desal.2014.03.029.
[36] Zamen M., Amidpour M., Firoozjaei M.R. (2013) A novel integrated system for fresh water production in greenhouse: Dynamic simulation. Desalination 322:52-59. DOI: 10.1016/j.desal.2013.04.024.
[37] Zarei T., Behyad R., Abedini E. (2017) Study on parameters effective on the performance of a humidification-dehumidification seawater greenhouse using support vector regression. Desalination. DOI: https://doi.org/10.1016/j.desal.2017.05.033.
[38] Zurigat Y., Aldoss T., Dawoud B., Theodordis G. (2008) Greenhouse-State of the art review and performance evaluation of dehumidiï¬er, Muscat.
-
Downloads
-
How to Cite
M. Al-Ismaili, A., & Bait Suwailam, T. (2018). Simulation Models of the Seawater Greenhouse. International Journal of Engineering & Technology, 7(3.16), 90-93. https://doi.org/10.14419/ijet.v7i3.4.16190Received date: 2018-07-24
Accepted date: 2018-07-24
Published date: 2018-07-26