A Gradient Based Approach for Fingerprint Image Segmentation using Morphological Operators

  • Authors

    • Reji Joy Department of Computer Science,Karpagam Academy of Higher Education,Coimbatore,India
    • Hemalatha S Department of Computer Science,Karpagam Academy of Higher Education,Coimbatore,India
    2018-09-20
    https://doi.org/10.14419/ijet.v7i4.16244
  • AFIS, Fingerprint, Gradient Mask, Morphological Operations, Segmentation.
  • Abstract

    The advancement of science and technology has made the reliable individual recognition and identification systems to become very popular. From the various biometric characteristics, fingerprint is one of the popular method because of its easiness and not much effort is required to acquire fingerprint. First step for an Automated Fingerprint Identification System (AFIS) is the segmentation of fingerprint from the acquired image. During fingerprint segmentation process the input image is decomposed into foreground and background areas. The foreground area contains information that are needed in the automatic fingerprint recognition systems. However, the background is a noisy region that contributes to the extraction of false features. So in an AFIS, fingerprint image segmentation plays an important role in carefully separating ridge like part (foreground) from noisy background. Gradient based method is commonly used for segmentation process. Since gradient estimation is erroneous in noisy images, the study proposes a combination of gradient mask and morphological operations to segment fingerprint foreground effectively. The results obtained prove that the new method is suited for fingerprint segmentation.

  • References

    1. [1] A. M. Bazen and S. H. Gerez, â€Segmentation of fingerprint imagesâ€,ProRISC 2001 Workshop on Circuits, Systems and Signal Processing, Veldhoven, The Netherlands, (2001).

      [2] F. Alonso-Fernandez, J. Fierrez-Aguilar, J. Ortega-Garcia, â€An enhanced Gabor filter-based segmentation algorithm for fingerprint recognition systemsâ€, Proceedings of the 4th International Symposium on Image and Signal Processing and Analysis (ISPA 2005), (2005), pp.239–244.

      [3] X. Chen, J. Tian, J. Cheng, X. Yang, â€Segmentation of fingerprint images using linear classifierâ€, EURASIP Journal on Applied Signal Processing, Vol.2004, No.4, (2004), pp.480–494.

      [4] C. Wu, S. Tulyakov, V. Govindaraju, â€Robust Point-Based Feature Fingerprint Segmentation Algorithmâ€, Proceedings of Lee, S.-W., Li, S.Z. (eds.) ICB 2007, LNCS, Vol.4642, Springer, Heidelberg (2007), pp.1095–1103.

      [5] D.Luo, Q.Tao, J.Long, and X.Wu, â€Orientaion consistency based feature extraction for fingerprint identificationâ€, Proceedings of TEN ON’02 IEEE, Vol.1, (2002), pp.494-497.

      [6] R. C. Gonzalez, and P. Wintz, â€Digital Image Processing.2nd Editionâ€,Addison-Wesley, (1987).

      [7] Jinhai Zhang, â€The research of fingerprint image segmentation methodâ€, Consumer Electronics, Communications and Networks (CECNet), (2012), pp.701-704.

      [8] R. Shekhar, and M. Pradeep, â€Correlation based Fingerprint Image Segmentationâ€, International Journal of Computer Applications, Vol.68, No.7, (2013).

      [9] M. U. Akram, A. Ayaz, and J. Imtiaz, â€Morphological and gradient based fingerprint image segmentationâ€, Information and Communication Technologies (ICICT), (2011), pp.1-4.

      [10] Rein van den Boomgaard, Richard van Balen, â€Methods for fast morphological image transforms using bitmapped binary imagesâ€, Proceedings of CVGIP: Graphical Models and Image Processing, Vol. 54, No.3, (1992), pp.252-258.

      [11] Zacharias, G. C., and P. S. Lal, â€Singularity detection in fingerprint image using orientation consistencyâ€, Proceedings of International Mutli-Conference on Automation Computing Communication Control and Compressed Sensing (iMac4s), (2013).

      [12] http://www.neurotechnologija.com/download.html

  • Downloads

  • How to Cite

    Joy, R., & S, H. (2018). A Gradient Based Approach for Fingerprint Image Segmentation using Morphological Operators. International Journal of Engineering & Technology, 7(4), 2453-2456. https://doi.org/10.14419/ijet.v7i4.16244

    Received date: 2018-07-26

    Accepted date: 2018-08-24

    Published date: 2018-09-20