Robust Diagnosis of Vehicular Active Suspension System Using Bond Graph Approach

  • Authors

    • Abderrahmene Sellami
    • Dhia Mzoughi
    • Abdelkader Mami
    2018-07-27
    https://doi.org/10.14419/ijet.v7i3.13.16325
  • Robust Diagnosis, Bond Graph, Vehicular Active Suspension System, Fractional Linear Transformations.
  • Diagnostic systems play a major role in the safety of industrial systems and the availability of its equipment. Rapid detection (as soon as possible) to the operator of the detected deviations (defects) in relation to the expected nominal behavior is fundamental for the implementation of preventive and corrective actions on industrial systems.

    These industrial systems are governed by several physical phenomena and various technological components, which is why the Bond Graph tool, based on an energy and multi-physical analysis, is well suited. In this article, we will discuss the problem of diagnosing an active suspension system of a vehicle by presenting diagnostic methods. Then, we introduce the bond graph tool for the robust diagnosis of the system. Finally, the extension of the deterministic models presented to models integrating uncertain elements (Fractional linear transformations LFT) and the generation of robust analytical redundancy relationships are also detailed.

     

     

  • References

    1. [1] H.M. Paynter. « Analysis and design of engineering systems», M.I.T.Press, 1961.

      [2] D.C. Karnopp. and R.C. Rosenberg. « Systems Dynamics: a Unified Approach », Mac Graw Hill, 1983.

      [3] R.C. Rosenberg. « Introduction to physical System Dynmics», Series in mechanical engineering, Mac Graw Hill, 1983.

      [4] M. Tagina. and G. Dauphin, Tanguy. « La méthodologie bond graph. Principes et applications», Centre de Publication Universitaire, 2003.

      [5] S. Benmoussa, B. Ould-Bouamama, R Merzouki. « Bond Graph Approach for Plant Fault Detection and Isolation: Application to Intelligent Autonomous Vehicle». Automation Science and Engineering, IEEE Transactions on, vol.11, no.2, pp.585-593, April 2014.

      [6] A.S. Boudaoud, M. Khemliche, B. Ould Bouamama, S. Bacha and L. F. Lavado Villa. « Bond graph modeling and optimization of photovoltaic pumping system: Simulation and experimental results». Simulation Modelling Practice and Theory Journal, Vol. 36, pp. 84-103, August 2013.

      [7] B. Ould Bouamama, R. El Harabi, M. N. Abdelkrim and M.K. Bengayed. « Bond Graphs for diagnosis of Chemical Processes». Computers & Chemical Engineering, vol. 36, pp. 301-324, 2012.

      [8] B. Ould Bouamama, G. Dauphin-Tanguy. «Modelisation Bond Graph Element de base pour l’energetique». Technique de l’ingenieur, BE 8 280, 2005.

      [9] B. Ould Bouamama. «Fault detection and isolation of smart actuators using Bond graph and external models». In Control Engineering Practice, Volume 13, N° 2, pp. 159-175, 2004.

      [10] B. Ould Bouamama, M. Bayart, K. Medjaher, B. Conard. «FDI of smart actuators using bond graphs and externalmodels». submitted to Control Engineering Practice (CEP) journal, 2002.

      [11] B. Ould Bouamama, G. Dauphin-Tanguy, M. Straoswcki, F. Busson. F. «Bond Graph Technique as a Decision-Making Tool in Supervision Systems». HKK Conference & Symposium in Graph Theoretic & Entropy Methods in Engineering, University of Waterloo, June 13-15, p 91-97, 1999.

      [12] Dauphin-Tanguy, G. 2000. «Les Bond Graphs ». 1st Edn, HERMES Science Publications, Paris, ISBN-10: 2-7462-0158-5.

      [13] Henry, D. and A. Zolghari, 2006. Norm-based design of robust FDI schemes for uncertain systems under feedback control: Comparison of two approaches. Control Eng. Pract., 14: 1081-1097. DOI: 10.1016/j.conengprac. 2005.

      [14] Han, Z., W. Li and S.L. Shah, 2002. Fault detection and isolation in the presence of process uncertainties. Proceedings of the 15th IFAC World Congress, (WC’ 02), pp: 1887-1892.

      [15] Redheffer. R, 1994. On a certain linear fractional transformation. EMJ. Maths Phys., 39: 269-286.

      [16] Alazard. D, C. Cumer, P. Apkarian, M. Gauvrit and G. Fereres, 1999. Robustesse et Commande Optimale. 1st Edn., Cépadues-Editions, Toulouse, ISBN-10: 2854285166, pp: 348.

      [17] Oustaloup, A., 1994. La robustesse. 1st Edn. Hermès, ISBN-10: 2.86601.442.1.

      [18] SallamI. A, Zanzouri. N and B. Ould Bouamama «Robust Supervision of Industrials Systems by Bond Graph and External Models». International Journal of Enhanced Research in Science Technology & Engineering ISSN: 23197463, Vol. 5 Issue 3, March 2016

      [19] Sallami. A, Nadia. Z, Mekki. K. «Robust Fault Diagnosis Observer of Dynamical Systems Modelled by Bond Graph Approach». International Journal of Computer Science and Network Security, vol.12 No.1, January 2012.

      [20] Djeziri, M.A., B. Ould Bouamama and R. Merzouki, 2009. «Modelling and robust FDI of steam generator using uncertain bond graph model». J. Process Control, 19: 149-162. DOI: 10.1016/j.jprocont.2007.12.009

      [21] Djeziri. M.A., 2007. «Diagnostic des systèmes incertains par l’approche bond graph». Thèse de Doctorat, École Centrale de Lille.

      [22] Vergé. M and Jaume. D. «Modélisation Structurée des Systèmes avec les Bond Graphs». Editions Technip, Paris, 2004.

      [23] Baudouin F. et Lavabre M. «Capteurs: principes et utilisations». Casteilla, 2007.

      [24] Fraden. J. «Handbook of modern sensor».s. Springer-Verlag, 2004. Voir le § 13.2 pour les capteurs capacitifs, en particulier celui d’humidité. Le chapitre 18 est consacré aux matériaux des capteurs, le § 18.3 décrit plus précisé- ment les technologies de fabrication des MEMS.

      [25] Viktorovitch. P. «Microsystèmes opto-électromécaniques MOEMS». hermès - Collection Traité EGEM, 2003.

      [26] Asch. G. «Acquisition de données; du capteur à l’ordinateur». Dunod, 1999.

      [27] Controllab Products, 20-sim version 4.0, http://www.20sim.com

  • Downloads

  • How to Cite

    Sellami, A., Mzoughi, D., & Mami, A. (2018). Robust Diagnosis of Vehicular Active Suspension System Using Bond Graph Approach. International Journal of Engineering & Technology, 7(3.13), 61-67. https://doi.org/10.14419/ijet.v7i3.13.16325