Molecular dynamics simulation of welding and joining processes: an overview
-
2018-12-05 https://doi.org/10.14419/ijet.v7i4.16610 -
Molecular Dynamics Simulation, Joining, Welding, Bonding. -
Abstract
Molecular dynamics (MD) is a simulation of physical movements of atoms and molecules in the context of N body simulation. The atoms and molecules are allowed to interact for a period of time, giving a view of the motion of the atoms. Molecular Dynamic (MD) simulation is one of the important methods that can be applied to simulate joining processes at the atomic scale. Nowadays, many investigations had been done in molecular dynamics simulation of various joining processes like diffusion bonding, explosive welding, friction stir welding, linear friction welding, cold welding, nanojoining, thermal bonding, and nanoscale soldering. This paper reviews the findings in the literature up to now in this evolving field, specifically, the experimental details, and the advantages and disadvantages of the various types of welding methods that have been proposed. Moreover, it highlights the big prospect of the molecular dynamics simulation and future directions for further research in the joining process.
Â
-
References
[1] M. N. Mohammed, M. Z. Omar, Z. Sajuri, M. S. Salleh, and K. S. Alhawari, “Trend and Development of Semisolid Metal Joining Processing,†Adv. Mater. Sci. Eng., vol. 2015, 2015.
[2] M. N. Mohammed; M. Z. Omar; S. Al-Zubaidi; K. S. Alhawari; M. A. Abdelgnei. Microstructure and Mechanical Properties of Thixowelded AISI D2 Tool Steel. Metals 2018, 8, 316. https://doi.org/10.3390/met8050316.
[3] S. D. Chen, A. K. Soh, and F. J. Ke, “Molecular dynamics modeling of diffusion bonding,†Scr. Mater., vol. 52, no. 11, pp. 1135–1140, 2005. https://doi.org/10.1016/j.scriptamat.2005.02.004.
[4] R. A. Johnson, “Alloy models with the embedded-atom method,†Phys. Rev. B, vol. 39, no. 17, pp. 12554–12559, 1989. https://doi.org/10.1103/PhysRevB.39.12554.
[5] American Welding Society, Welding Handbook Volume 1: Welding Technology, 8th ed. Miami: American Welding Society (AWS), 550 N. W. LeJeune Road, Miami, Florida, 1998.
[6] S. D. Chen, F. J. Ke, M. Zhou, and Y. Bai, “Atomistic investigation of the effects of temperature and surface roughness on diffusion bonding between Cu and Al,†Acta Mater., vol. 55, no. 9, pp. 3169–3175, 2007. https://doi.org/10.1016/j.actamat.2006.12.040.
[7] C. Li, D. Li, X. Tao, H. Chen, and Y. Ouyang, “Molecular dynamics simulation of diffusion bonding of Al-Cu interface,†Model. Simul. Mater. Sci. Eng., vol. 22, no. 6, 2014. https://doi.org/10.1088/0965-0393/22/6/065013.
[8] X.-H. Li, W.-X. Chu, T. Ma, and Q.-W. Wang, “Molecular Dynamics Simulation on Diffusion Welding Between Cu and Al Under Different Pressures and Roughnesses,†Proc. ASME 2016 Heat Transf. Summer Conf., 2017.
[9] L. Xiu and J. F. Wu, “Atomic Diffusion Behavior in W / Cu Diffusion Bonding Process,†J. Fusion Energy, 2015. https://doi.org/10.1007/s10894-015-9884-9.
[10] H. J. Kim et al., “Nanostructures generated by explosively driven friction: Experiments and molecular dynamics simulations,†Acta Mater., vol. 57, no. 17, pp. 5270–5282, 2009. https://doi.org/10.1016/j.actamat.2009.07.034.
[11] O. Saresoja, A. Kuronen, and K. Nordlund, “Atomistic simulation of the explosion welding process,†Adv. Eng. Mater., vol. 14, no. 4, pp. 265–268, 2012. https://doi.org/10.1002/adem.201100211.
[12] S. Y. Chen, Z. W. Wu, K. X. Liu, X. J. Li, N. Luo, and G. X. Lu, “Atomic diffusion behavior in Cu-Al explosive welding process,†J. Appl. Phys., vol. 113, no. 4, 2013. https://doi.org/10.1063/1.4775788.
[13] C. Shi-yang, W. Zhen-wei, and L. Kai-xin, “Atomic diffusion across Ni 50 Ti 50 Cu explosive welding interface : Diffusion layer thickness and atomic concentration distribution ∗,†Chin. Phys. B, vol. 23, no. 6, pp. 1–6, 2014.
[14] T.-T. Zhang, W.-X. Wang, @bullet Jun Zhou, X.-Q. Cao, R.-S. Xie, and @bullet Yi Wei, “Molecular Dynamics Simulations and Experimental Investigations of Atomic Diffusion Behavior at Bonding Interface in an Explosively Welded Al/Mg Alloy Composite Plate,†Acta Metall. Sin. (English Lett. 2017.
[15] A. I. Dmitriev, E. A. Kolubaev, A. Y. Nikonov, V E Rubstob, and S. G. Psakhie, “Study patterns of microstructure formation during friction stir welding,†Proc. XLII Int. Summer Sch. APM 2014, pp. 10–16, 2014.
[16] A. Y. Nikonov, A. I. Dmitriev, I. S. Konovalenko, E. A. Kolubaev, S. V. Astafurov, and S. G. Psakhie, “Features of interface formation in crystallites under mechanically activated diffusion. A molecular dynamics study,†Proc. 8th Int. Conf. Comput. Plast. - Fundam. Appl. COMPLAS 2015, pp. 982–991, 2015.
[17] I. Konovalenko, I. S. Konovalenko, A. Dmitriev, S. Psakhie, and E. Kolubaev, “Mass Transfer at Atomic Scale in MD Simulation of Friction Stir Welding,†Key Eng. Mater., vol. 683, pp. 626–631, 2016. https://doi.org/10.4028/www.scientific.net/KEM.683.626.
[18] A. Y. Nikonov, I. S. Konovalenko, and A. I. Dmitriev, “Molecular dynamics study of lattice rearrangement under mechanically activated diffusion,†Phys. Mesomech., vol. 19, no. 1, pp. 77–85, 2016. https://doi.org/10.1134/S1029959916010082.
[19] I. S. Konovalenko, I. S. Konovalenko, and S. G. Psakhie, “Molecular dynamics modelling of bonding two materials by atomic scale friction stir welding,†AIP Conf. Proc. 1909, 020092, vol. 020092, p. 020092, 2017.
[20] T. Ma, T. Chen, W. Y. Li, S. Wang, and S. Yang, “Formation mechanism of linear friction welded Ti-6Al-4V alloy joint based on microstructure observation,†Mater. Charact., vol. 62, no. 1, pp. 130–135, 2011. https://doi.org/10.1016/j.matchar.2010.11.009.
[21] I. Bhamji, M. Preuss, P. L. Threadgill, R. J. Moat, A. C. Addison, and M. J. Peel, “Linear friction welding of AISI 316L stainless steel,†Mater. Sci. Eng. A, vol. 528, no. 2, pp. 680–690, 2010. https://doi.org/10.1016/j.msea.2010.09.043.
[22] A. Vairis and M. Frost, “On the extrusion stage of linear friction welding of Ti 6Al 4V,†Mater. Sci. Eng. A, vol. 271, no. 1–2, pp. 477–484, 1999. https://doi.org/10.1016/S0921-5093(99)00449-9.
[23] Z. Jiao, C. Song, T. Lin, and P. He, “Molecular dynamics simulation of the effect of surface roughness and pore on linear friction welding between Ni and Al,†Comput. Mater. Sci., vol. 50, no. 12, pp. 3385–3389, 2011. https://doi.org/10.1016/j.commatsci.2011.06.033.
[24] C. Song, T. Lin, P. He, Z. Jiao, J. Tao, and Y. Ji, “Molecular dynamics simulation of linear friction welding between dissimilar Ti-based alloys,†Comput. Mater. Sci., vol. 83, pp. 35–38, 2014. https://doi.org/10.1016/j.commatsci.2013.11.013.
[25] A. V. Krasheninnikov, K. Nordlund, J. Keinonen, and F. Banhart, “Ion-irradiation-induced welding of carbon nanotubes,†Phys. Rev. B - Condens. Matter Mater. Phys., vol. 66, no. 24, pp. 1–6, 2002. https://doi.org/10.1103/PhysRevB.66.245403.
[26] I. Jang, S. B. Sinnott, D. Danailov, and P. Keblinski, “Molecular Dynamics Simulation Study of Carbon Nanotube Welding under Electron Beam Irradiation,†Nano Lett., vol. 4, no. 1, pp. 109–114, 2004. https://doi.org/10.1021/nl034946t.
[27] X. Song, M. Chen, and Z. Gan, “Atomistic study of welding of carbon nanotube onto metallic substrates,†Proc. - Electron. Components Technol. Conf., pp. 2259–2263, 2013. https://doi.org/10.1109/ECTC.2013.6575897.
[28] M. U. Kucukkal and S. J. Stuart, “Simulation of carbon nanotube welding through Ar bombardment,†J. Mol. Model., vol. 23, no. 4, 2017. https://doi.org/10.1007/s00894-017-3323-y.
[29] J. Song and D. J. Srolovitz, “Molecular dynamics investigation of patterning via cold welding,†J. Mech. Phys. Solids, vol. 57, no. 4, pp. 776–787, 2009. https://doi.org/10.1016/j.jmps.2008.12.001.
[30] Z. S. Pereira and E. Z. da Silva, “Cold Welding of Gold and Silver Nanowires: A Molecular Dynamics Study,†J. Phys. Chem. C, vol. 115, no. 46, pp. 22870–22876, 2011. https://doi.org/10.1021/jp207842v.
[31] W. Wang and C. Yi, “Molecular dynamics understanding of tensile behaviours of cold welding experiments of <100> oriented ultra-thin gold nanowires,†Mater. Res. Innov., vol. 18, no. S2, pp. S2-673-S2-677, 2014.
[32] G. Dai, B. Wang, S. Xu, Y. Lu, and Y. Shen, “Side-to-Side Cold Welding for Controllable Nanogap Formation from ‘dumbbell’ Ultrathin Gold Nanorods,†ACS Appl. Mater. Interfaces, vol. 8, no. 21, pp. 13506–13511, 2016. https://doi.org/10.1021/acsami.6b01070.
[33] P. H. Huang and Y. F. Wu, “Molecular Dynamics Studies of Cold Welding of FCC Metallic Nanowires,†Adv. Mater. Res., vol. 875–877, pp. 1367–1371, 2014. https://doi.org/10.4028/www.scientific.net/AMR.875-877.1367.
[34] C.-D. Wu, T.-H. Fang and C.-C. Wu, “Effect of temperature on welding of metallic nanowires investigated using molecular dynamics simulations,†Mol. Simul., vol. 42, no. 2, pp. 131–137, 2016. https://doi.org/10.1080/08927022.2015.1020488.
[35] R. Huang, G. F. Shao, and Y. H. Wen, “Cold welding of copper nanowires with single-crystalline and twinned structures: A comparison study,†Phys. E Low-Dimensional Syst. Nanostructures, vol. 83, pp. 329–332, 2016.
[36] J. Cui, X. Wang, T. Barayavuga, X. Mei, W. Wang, and X. He, “Nanojoining of crossed Ag nanowires: a molecular dynamics study,†J. Nanoparticle Res., vol. 18, no. 7, 2016. https://doi.org/10.1007/s11051-016-3479-x.
[37] J. Cui, B. Theogene, X. Wang, X. Mei, W. Wang, and K. Wang, “Molecular dynamics study of nanojoining between axially positioned Ag nanowires,†Appl. Surf. Sci., vol. 378, pp. 57–62, 2016. https://doi.org/10.1016/j.apsusc.2016.03.148.
[38] L. Liu, D. Shen, G. Zou, P. Peng, and Y. Zhou, “Cold welding of Ag nanowires by large plastic deformation,†Scr. Mater., vol. 114, pp. 112–116, 2016. https://doi.org/10.1016/j.scriptamat.2015.12.010.
[39] C.-D. Wu, T.-H. Fang and C.-C. Wu, “Size effect on cold-welding of gold nanowires investigated using molecular dynamics simulations,†J. Appl. Phys., vol. 122, no. 3, p. 218, 2016. https://doi.org/10.1007/s00339-016-9770-y.
[40] H. Zhou, W.-P. Wu, R. Wu, G. Hu, and R. Xia, “Effects of various conditions in cold-welding of copper nanowires: A molecular dynamics study,†J. Appl. Phys., vol. 122, no. 20, 2017. https://doi.org/10.1063/1.5004050.
[41] H. Zhou, Y. Xian, R. Wu, G. Hu, and R. Xia, “Formation of gold composite nanowires using cold welding: a structure-based molecular dynamics simulation,†CrystEngComm, vol. 19, no. 42, pp. 6347–6354, 2017. https://doi.org/10.1039/C7CE01502J.
[42] J. Cui et al., “Atomistic simulations on the axial nanowelding configuration and contact behavior between Ag nanowire and single-walled carbon nanotubes,†J. Nanoparticle Res., vol. 19, no. 3, p. 90, 2017. https://doi.org/10.1007/s11051-017-3790-1.
[43] J. Wang and S. Shin, “Room temperature nanojoining of Cu-Ag core-shell nanoparticles and nanowires,†J. Nanoparticle Res., vol. 19, no. 2, 2017.
[44] N. Amanat, N. L. James, and D. R. McKenzie, “Welding methods for joining thermoplastic polymers for the hermetic enclosure of medical devices,†Med. Eng. Phys., vol. 32, no. 7, pp. 690–699, 2010. https://doi.org/10.1016/j.medengphy.2010.04.011.
[45] T. Ge, F. Pierce, D. Perahia, G. S. Grest, and M. O. Robbins, “Molecular dynamics simulations of polymer welding: Strength from interfacial entanglements,†Phys. Rev. Lett., vol. 110, no. 9, pp. 1–5, 2013. https://doi.org/10.1103/PhysRevLett.110.098301.
[46] S. Prager, D. Adolf, and M. Tirrell, “Welding of polymers of nonuniform molecular weight,†J. Chem. Phys., vol. 78, no. 11, pp. 7015–7016, 1983. https://doi.org/10.1063/1.444623.
[47] R. P. Wool, J. L. Willett, O. J. McGarel, and B. L. Yuan, “Strength of Polymer Interfaces.†Am. Chem. Soc. Polym. Prepr. Div. Polym. Chem., vol. 28, no. 2, pp. 38–39, 1987.
[48] D. R. Rottach, J. G. Curro, J. Budzien, G. S. Grest, C. Svaneborg, and R. Everaers, “Molecular dynamics simulations of polymer networks undergoing sequential cross-linking and scission reactions,†Macromolecules, vol. 40, no. 1, pp. 131–139, 2007. https://doi.org/10.1021/ma062139l.
[49] F. Pierce, D. Perahia, and G. S. Grest, “Dynamics of polymers across an interface,†Epl, vol. 95, no. 4, 2011. https://doi.org/10.1209/0295-5075/95/46001.
[50] K. Yokomizo, Y. Banno, and M. Kotaki, “Molecular dynamics study on the effect of molecular orientation on polymer welding,†Polym. (United Kingdom), vol. 53, no. 19, pp. 4280–4286, 2012.
[51] T. Ge, G. S. Grest, and M. O. Robbins, “Tensile Fracture of Welded Polymer Interfaces : Miscibility, entanglements and crazing arXiv : 1410 1917v1 cond-mat. soft ] 7 Oct 2014,†Macromolecules, 2014.
[52] H. Yang, K. Yu, X. Mu, Y. Wei, Y. Guo, and H. J. Qi, “Molecular dynamics studying on welding behavior in thermosetting polymers due to bond exchange reactions,†RSC Adv., vol. 6, no. 27, pp. 22476–22487, 2016. https://doi.org/10.1039/C5RA26128G.
[53] Cui, J., Yang, L., Zhou, L., & Wang, Y. (2014). Nanoscale Soldering of Axially Positioned Single-Walled Carbon Nanotubes : A Molecular Dynamics Simulation Study. ACS Applied Materials and Interfaces. https://doi.org/10.1021/am405114n.
[54] Munizaga, V., GarcÃa, G., Bringa, E., Weissmann, M., RamÃrez, R., & Kiwi, M. (2014). Atomistic simulation of soldering iron filled carbon nanotubes. Computational Materials Science, 92, 457–463. https://doi.org/10.1016/j.commatsci.2014.06.006.
[55] X. Zheng, “Molecular dynamics simulation of boundary lubricated contacts,†University of Wollongong, 2014.
[56] X. Yan and Q. Yang, “Rotation, elongation and failure of CNT nanoropes induced by electric field,†Comput. Mater. Sci., vol. 98, pp. 333–339, 2015. https://doi.org/10.1016/j.commatsci.2014.11.034
[57] J. L. Zang, Q. Yuan, F. C. Wang, and Y. P. Zhao, “A comparative study of Young’s modulus of single-walled carbon nanotube by CPMD, MD and first principle simulations,†Comput. Mater. Sci., vol. 46, no. 3, pp. 621–625, 2009. Comput. Mater. Sci., vol. 46, no. 3, pp. 621–625, 2009.
-
Downloads
-
How to Cite
Zaenudin, M., N. Mohammed, M., & Al-Zubaidi, S. (2018). Molecular dynamics simulation of welding and joining processes: an overview. International Journal of Engineering & Technology, 7(4), 3816-3825. https://doi.org/10.14419/ijet.v7i4.16610Received date: 2018-08-01
Accepted date: 2018-08-17
Published date: 2018-12-05