Optical and Electronic Properties of II-VI Group Semiconductor Nanomaterials from Energy Gaps
-
2018-08-04 https://doi.org/10.14419/ijet.v7i3.1.16813 -
Electronic Polarisability, Energy Gap, Fermi Energy, Ionocity and Refractive Index. -
Abstract
A simple relation between the energy gap and refractive index is given for II-VI group semiconductors. Optical and electronic properties are evaluated by proposing a relation between energy gap and refractive index. The computed values are in fair agreement with the experimental values and earlier researches. This work emphasizes the understanding of interrelation between these parameters.
Â
Â
-
References
[1] P.H.O. Rappl, P. J.McCann, Development of a novel epitaxial-layer segmentation method for optoelectronic device fabrication, IEEE Photonics Technology Letters, 15, 3, 2003, 374-376.
[2] S. M. Sze, K. K. Ng, Physics of Semiconductor Devices, Third edition, John Wiley, New York, 2008.
[3] M. A. Herman, M. Pessa, Hg1−xCdxTeâ€Hg1−yCdyTe (0≤x, y≤1) heterostructures: Properties, epitaxy, and applications, Journal of Applied Physics, 57, 1985, 2671.
[4] D. A. Cammack, R. J. Dalby, H. J. Cornelissen, J. Khurgin, Electron beam pumped lasing in zinc selenide/zinc sulfide selenide superlattice structures grown by molecular-beam epitaxyJournal of Applied Physics, 62, 7, 1987, 3071-74.
[5] S. Kasap, P. Capper, Springer Handbook of Electronics and Photonic Materials, Second edition, Springer International Publishing, Switzerland, 2017.
[6] R. Khenata, A. Bouhemadou, M. Sahnoun, A. H Reshak, H. Baltache, M. Rabah, Elastic, electronic and optical properties of ZnS, ZnSe and ZnTe under pressure, Computational Materials Science, 38,1,2006, 29-38.
[7] M. A. Hasse, J.Qui, J. M. DePuydt, H. Cheng, Blue-Green laser diodes, Applied Physics Letters, 59,11, 1991,1272-74.
[8] T. S. Moss, Relations between the Refractive Index and Energy Gap of Semiconductors, Phy. Stat. Sol.(B), 131, 2, 1985, 415-427.
[9] A. Bahadur , M. Mishra, Correlation Between Refractive Index and Electronegativity Difference for A^{N}B^{8-N} Type Binary Semiconductors, Acta Physics Polonica A, 123, 4, 2013,737-740
[10] S. K. Tripathy, A. Pattanaik, Optical and electronic properties of some binary semiconductors from energy gaps, Optical Materials, 53, 2016, 123-133.
[11] S. K. Tripathy, Refractive indices of semiconductors from energy gaps, Optical Materials, 46, 2015, 240-46.
[12] M. Sardela, Practical Materials Characterization, Springer, New York, 2014.
[13] A. Hinchliffe, H. J. Soscun Machado, Density Functional Studies of Molecular Polarizabilities. 7. Anthracene and Phenanthrene, International Journal of Molecular Sciences, 1, 1, 2000, 8-16.
[14] M. J. Weber, Handbook of Optical Materials, CRC Press, Boca Raton, Florida, 2002.
[15] X. Liu, M.T. Swihart, Heavily-doped colloidal semiconductor and metal oxide nanocrystals: an emerging new class of plasmonic nanomaterials, Chemical Society Reviews, 43, 11, 2014, 3908-3920.
[16] X. Pi, C. Delerue, Tight-Binding Calculations of the Optical Response of Optimally P-Doped Si Nanocrystals: A Model for Localized Surface Plasmon Resonance, Physical Review Letters, 111, 17, 2013.
[17] J. D. Jackson, Classical Electrodynamics, Third edition, John Wiley, New York, 1998.
[18] N.M. Ravindra, R. P. Bhardwaj, K. Sunil Kumar, V.K. Srivastava, Model based studies of some optical and electronic properties of narrow and wide gap materials, Infrared Physics, 21,6,1981,369-381.
[19] S. Adachi, Properties of Group- IV, III-V and II-VI Semiconductors, John Wiley & Sons, Ltd., 2005.
[20] C. R. A. Catlow, A. M. Stoneham, Ionicity in solids, Journal of Physics C: Solid State Physics, 16, 22, 1983, 4321.
-
Downloads
-
How to Cite
Jain, R., & M Singh, K. (2018). Optical and Electronic Properties of II-VI Group Semiconductor Nanomaterials from Energy Gaps. International Journal of Engineering & Technology, 7(3.1), 121-123. https://doi.org/10.14419/ijet.v7i3.1.16813Received date: 2018-08-04
Accepted date: 2018-08-04
Published date: 2018-08-04