Spatial Assessment and the Most Significant Parameters for Drinking Water Quality Using Chemometric Technique: A Case Study at Malaysia Water Treatment Plants

 
 
 
  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract


    The objectives of this study are to determine the most significant spatial variation of drinking water pollutant and to identify the most significant parameters in each group of physico- chemical parameters (PCPs), Inorganic parameters (IOPs), heavy metals and organic parameters (HMOPs) and pesticides parameters (PPs). The Discriminant Analysis (DA) and One- Way Analysis of variance (ANOVA) showed spatial variation on four station categories and the variance of four group parameter in water drinking quality while principle component analysis (PCA) was carried out to identify the most significant of each water quality parameters base on given group. DA and ANOVA successfully reduced the physico and inorganic pollutants concentration with significant value 98.63% and 96.90%. PCA revealed six most significant drinking water quality parameters for PCPs, nine significant parameters for IOPs, fourteen parameters on HMOPs and four significant of PPs with the p value less than 0.05 (p < 0.05). Therefore, this study proves that chemometric method is the alternative way to explain the characteristic of the drinking water quality and could reduce several parameters and sampling points in the future sampling strategy.

     

     


  • Keywords


    Discriminant analysis; One- way analysis of variance; Principal component analysis; Drinking water quality.

  • References


      [1] UN-Water, An increasing demand, facts ans figures, UN-Water, coordinated by UNESCO in collaboration with UNECE and UNDESA, 2013, http://www.unwater.org/water-cooperation-2013/en/.

      [2] World Health Organization (WHO), Guidelines for Drinking-Water Quality, WHO Press, Geneva, Switzerland, 4th edition, 2011.

      [3] Diersing, N. (2009). Water Quality: Frequently Asked Questions. Florida Keys National Marine Sanctuary, Key West, FL.

      [4] Johnson, D. L., Ambrose, S. H., Bassett, T. J., Bowen, M. L., Crummey, D. E., Isaacson, J. S., ... & Winter-Nelson, A. E. (1997). Meanings of environmental terms. Journal of environmental quality, 26(3), 581-589.

      [5] Laporan KKM 2016

      [6] Massart, D. L., Vandeginste, B. G. M., Deming, S. N., Michotte, Y. K. A. U. F. M. A. N., & Kaufman, L. (1988). Chemometrics: a textbook.

      [7] Wold, S. (1995). Chemometrics; what do we mean with it, and what do we want from it? Chemometrics and Intelligent Laboratory Systems, 30(1), 109-115.

      [8] Ismail, Azimah, Mohd Ekhwan Toriman, Hafizan Juahir, Sharifuddin Md Zain, Nur Liyana Abdul Habir, Ananthy Retnam, Mohd Khairul Amri Kamaruddin, Roslan Umar, and Azman Azid. "Spatial assessment and source identification of heavy metals pollution in surface water using several chemometric techniques." Marine pollution bulletin 106, no. 1 (2016): 292-300.

      [9] Kannel, P. R., Lee, S., Kanel, S. R., & Khan, S. P. (2007). Chemometric application in classification and assessment of monitoring locations of an urban river system. Analytica Chimica Acta, 582(2), 390-399.

      [10] Howell, David (2002). Statistical Methods for Psychology. Duxbury. pp. 324–325.

      [11] K.P. Singh, A. Malik, S. Sinha, Water quality assessment and apportionment of pollution sources of Gomti River (India) using multivariate statistical techniques: a case study, Anal. Chim. Acta 538 (2005) 355

      [12] D.A. Wunderlin, M. Diaz, M.M.V. Ame, S.F. Pesce, A.C. Hued, M. Bistoni, Patern recognition techniques for the evaluation of spatial and temporal variations in water quality. A case study: Suquia River basin (CordobaArtgentina), Water Res. 35 (2001) 2881.

      [13] P.A. Rogerson, Statistical Methods for Geography, Sage Publications, London, 2001.

      [14] R.A. Johnson, D.W. Wichern, Applied Multivariate Statistical Analysis, 3rd ed., Prentice Hall, Englewood Cliffs, NJ, 1992, 642 pp.

      [15] K.P. Singh, A. Malik, D. Mohan, S. Sinha, Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India): a case study, Water Res. 38 (2004) 3980.

      [16] Poulsen, J., & French, A. (2008). Discriminant function analysis. Retrieved from.

      [17] M. Vega, R. Pardo, E. Barrado, L. Deban, Assesment of seasonal and polluting effects on the quality of river water by exploratory data analysis, Water Res. 32 (1998) 3581.

      [18] B. Helena, R. Pardo, M. Vega, E. Barrado, J.M. Fernandez, L. Fernandez, Temporal evolution of groundwater composition in an alluvial aquifer (Pisuerga River, Spain) by principal component analysis, Water Res. 34 (2000) 807.

      [19] J.E. Jackson, A Users Guide to Principal Components, Wiley, New York, 1991.

      [20] R.R. Meglen, Examining large databases: A chemometric approach using principal component analysis, Mar. Chem. 39 (1992) 217.)

      [21] Statheropoulos, M., Vassilliadis, N., Pappa, A., 1998. Principal component and canonical correlation analysis for examining air pollution and meteorological data. Atmospheric Environment 32, 1087e1095.

      [22] Kim, J.O., Mueller, C.W., 1987. Introduction to Factor Analysis: What It Is and How to Do It. In: Quantitative Applications in the Social Sciences Series. Sage University Press, Newbury Park

      [23] Liu, C.W., Lin, K.H., Kuo, Y.M., 2003. Application of factor analysis in the assessment of groundwater quality in a Blackfoot disease area in Taiwan. Science of the Total Environment 313, 77e89.

      [24] Simeonov, V., Einax, J. W., Stanimirova, I., & Kraft, J. (2002). Environmetric modeling and interpretation of river water monitoring data. Analytical and Bioanalytical Chemistry, 374, 898–905.

      [25] Kim, J. O., & Mueller, C. W. (1987). Introduction to factor analysis: what it is and how to do it. Quantitative applications in the social science series. Newbury Park: Sage University Press.

      [26] Liu, C. W., Lin, K. H., & Kuo, Y. M. (2003). Application of factor analysis in the assessment of groundwater quality in a Blackfoot disease area in Taiwan. Science of the Total Environment, 313, 77–89.

      [27] http://www.env.gov.bc.ca/wsd/plan_protect_sustain/groundwater/library/ground_fact_sheets/pdfs/coliform(020715)_fin2.pdf

      [28] https://www.doh.wa.gov/portals/1/Documents/pubs/331-286.pdf

      [29] http://www.who.int/water_sanitation_health/dwq/chemicals/ph_revised_2007_clean_version.pdf

      [30] Brown W S. 2016. Physical properties of seawater. In M. R. Dhanak, & N. I. Xiros (Eds.), Springer Handbook of Ocean Engineering. Cham: Springer, pp. 101-110

      [31] http://www.who.int/water_sanitation_health/dwq/chemicals/tds.pdf

      [32] http://www.fwspubs.org/doi/suppl/10.3996/052013-JFWM 033/suppl_file/patnodereference+s8.pdf?code=ufws-site

      [33] https://www.waterboards.ca.gov/water_issues/programs/swamp/docs/cwt/guidance/3310en.pdf

      [34] Clair N. S., McCarty, P. L. and Parkin, G. F. 2003. Chemistry for Environmental Engineering and Science (5th ed.). New York: McGraw-Hill.

      [35] Schumacher, B. A. 2002. Methods for the Determination of Total Organic Carbon (TOC) in Soils and Sediments. Ecological Risk Assessment Support Center. US. Environmental Protection Agency 23p.

      [36] Pais, I., & Jones Jr, J. B. (1997). The handbook of trace elements. CRC Press.

      [37] Wedepohl, K. H. 1995. The composition of the continental crust: Ingerson Lecture. Geochimica et Cosmochimica Acta 59(7):1217-1232.

      [38] ATSDR. 2005. Bromoform and dibromochloromethane (CAS # 75-25-2 and 124-48-1). U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES, Public Health Service Agency for Toxic Parameter and Disease Registry. http://www.atsdr.cdc.gov/toxfaq.html.

      [39] Schock, M. R., Cantor, A. F., Triantafyllidou, S., DeSantis, M. K., & Scheckel, K. G. (2014). Importance of pipe deposits to Lead and Copper Rule compliance. Journal: American Water Works Association, 106(7).

      [40] Ivahnenko, t., & zogorski, j. S. (2001). Sources and occurrence of chloroform and other trihalomethanes in drinking-water supply wells in the United States.

      [41] Al-Odaini, N. A., Zakaria, M. P., Zali, M. A., Juahir, H., Yaziz, M. I., & Surif, S. (2012). Application of chemometrics in understanding the spatial distribution of human pharmaceuticals in surface water. Environmental monitoring and assessment, 184(11), 6735-6748.

      [42] Maliki, A. B. H. M., Abdullah, M. R., Juahir, H., Abdullah, F., Abdullah, N. A. S., Musa, R. M., ... & Nasir, N. A. M. (2018, April). A multilateral modelling of Youth Soccer Performance Index (YSPI). In IOP Conference Series: Materials Science and Engineering (Vol. 342, No. 1, p. 012057). IOP Publishing.

      [43] Maliki, A. B. H. M., Abdullah, M. R., Juahir, H., Muhamad, W. S. A. W., Nasir, N. A. M., Musa, R. M., ... & Abdullah, N. A. S. (2018, April). The role of anthropometric, growth and maturity index (AGaMI) influencing youth soccer relative performance. In IOP Conference Series: Materials Science and Engineering (Vol. 342, No. 1, p. 012056). IOP Publishing.

      [44] Al-Odaini, N. A., Zakaria, M. P., Zali, M. A., Juahir, H., Yaziz, M. I., & Surif, S. (2012). Application of chemometrics in understanding the spatial distribution of human pharmaceuticals in surface water. Environmental monitoring and assessment, 184(11), 6735-6748.

      [45] Aris, A. Z., Abdullah, M. H., Praveena, S. M., Yusoff, M. K., & Juahir, H. (2010). Extenuation of saline solutes in shallow aquifer of a small tropical island: a case study of Manukan Island, North Borneo. Environment Asia, 3, 84-92.

      [46] Juahir, H., Zain, S. M., Aris, A. Z., Yusof, M. K., Samah, M. A. A., & Mokhtar, M. (2010). Hydrological trend analysis due to land use changes at Langat River Basin. Environment Asia, 3(2010), 20-31.

      [47] Kamarudin, M. K. A., Toriman, M. E., Rosli, M. H., Juahir, H., Aziz, N. A. A., Azid, A., ... & Sulaiman, W. N. A. (2015). Analysis of meander evolution studies on effect from land use and climate change at the upstream reach of the Pahang River, Malaysia. Mitigation and Adaptation Strategies for Global Change, 20(8), 1319-1334.


 

View

Download

Article ID: 16871
 
DOI: 10.14419/ijet.v7i3.14.16871




Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.