Spatial Assessment of Selangor, Malaysia Water Treatment Plant Performance Using Chemometric Technique
-
2018-07-25 https://doi.org/10.14419/ijet.v7i3.14.16874 -
Drinking water quality, Water treatment plant, Principal component analysis, One-way analysis of variance, Discriminant analysis. -
Abstract
This study aims to identify the most significant parameters in drinking water quality, spatial disparities of treated water (TW) and performance of water treatment plant (WTP) in Selangor. Physico- chemical (PCPs), Inorganic (IPs), Heavy metal and organic (HMOPs) and pesticide (PPs) were selected as parameters to discriminate the source of WTP pollutant. Chemometric technique such as principle component analysis (PCA), one-way analysis of variance (ANOVA) and discriminant analysis (DA) was applied to validate the performance of water treatment plant. PCA identified the most significant parameters which are highlighted six out of eight parameters for PCPs, six out of twelve parameters for IPs, nine out of sixteen parameters for HMOPs and all seventh parameters for PP. ANOVA for distinguish two categories region in WTP and showed both of PCPs and IPs had significant differences due to their concentration (p < 0.5) and HMOPs suggested fifth of significant differences within regions (p < 0.05). PP doesn’t give any significant differences (p > 0.05). DA was suggested PCPs, IPs and HMOPs in good performance (76.96%, 91.90% and 93.27%) except PP (50.43%). We can conclude that this chemometric technique can expose which area of WTP need to be properly maintains their performance to produce high quality of drinking water.
Â
Â
-
References
[1] Eldib, M. A., & Elbayoumy, M. A. A. (2003, April). Evaluation of A Water Treatment Plant Performance-Case Study. In Seventh International Water Technology Conference, pp. 1-3.
[2] National Drinking Water Quality surveillance Programme (NDWQSP) Annual Report Year 2016
[3] Christensen, J.H., Tomasi, G. 2007. A multivariate approach to oil hydrocarbon fingerprinting and spill source identification. Oil Spill Environmental Forensics XII 293–325.
[4] Juahir, H., Zain, S.M., Yusoff,M.K., Hanidza, T.I.T., Armi, A.S.M., Toriman,M.E., Mokhtar, M.2011. Spatial water quality assessment of Langat River Basin (Malaysia) usingenvironmetric techniques. Environmental Monitoring Assessment 173:625–641.
[5] Ismail, A., Toriman, M. E., Juahir, H., Md. Kassim, A., Md Zain, S., Ahmad, W. K. W., Fah, W. K., Retnam, A., Abdul Zali, M., Mokhtar, M. and Yusri, M. A. 2016a. Chemometric techniques in oil classification from oil spill fingerprinting. Marine Pollution Bulletin (article in press).
[6] Kannel, P.R., Lee, S., Kanel, S.R., Khan, S.P. 2007. Chemometric application in classificationand assessment of monitoring locations of an urban river system. Analytica Chimica Acta582, 390–399.
[7] Ismail, A., Toriman, M. E., Juahir, H., Md Zain, S., Abdul Habir, N. L., Retnam, A.,Kamaruddin, M. K. A., Umar, R. and Azid, A. 2016b. Spatial assessment and source identification of heavymetals pollution in surface waterusing several chemometric techniques. Marine Pollution Bulletin (article in press).
[8] Junninen, H., Niska, H., Tuppurainen, K., Ruuskanen, J., & Kolehmainen, M. (2004). Methods for imputation of missing values in air quality data sets. Atmospheric Environment, 38(18), 2895-2907.
[9] Osman, R., Saim, N., Juahir, H., & Abdullah, M. P. (2012). Chemometric application in identifying sources of organic contaminants in Langat river basin. Environmental monitoring and assessment, 184(2), 1001-1014.
[10] Vialle, C., Sablayrolles, C., Lovera, M., Jacob, S., Huau, M. C., & Montréjaud-Vignoles, M. (2011). Monitoring of water quality from roof runoff: Interpretation using multivariate analysis. Water research, 45(12), 3765-3775.
[11] Juahir, H., Zain, S. M., Yusoff, M. K., Hanidza, T. I. T., Armi, A. S. M., Toriman, M. E., Mokhtar, M. 2010. Environmental Monitoring and Assessment. 173(1-4): 625-641.
[12] Kamaruddin, A. F., Toriman, M. E., Juahir, H., Zain, S. M., Rahman, M. N. A., Kamarudin, M. K. A., & Azid, A. (2015). Spatial characterization and identification sources of pollution using multivariate analysis at Terengganu river basin, Malaysia. Jurnal Teknologi, 77(1), 269-273.
[13] Bewick, V., Cheek, L., & Ball, J. (2004). Statistics review 9: one-way analysis of variance. Critical care, 8(2), 130.
[14] Morrison, D. G. (2011). Discriminant analysis and predictive classification. Marketing Classics Press.
[15] Edberg, S. C. L., Rice, E. W., Karlin, R. J., & Allen, M. J. (2000). Escherichia coli: the best biological drinking water indicator for public health protection. Journal of Applied Microbiology, 88(S1).
[16] Cardoso Valverde, K., Konradt Moraes, L. C., Carvalho Bongiovani, M., Pereira Camacho, F., & Bergamasco, R. (2013). Coagulation diagram using the Moringa oleifera Lam and the aluminium sulphate, aiming the removal of color and turbidity of water. Acta Scientiarum. Technology, 35(3).
[17] Mirzaei, N., Ghaffari, H. R., Karimyan, K., Moghadam, F. M., Javid, A., & Sharafi, K. (2015). Survey of effective parameters (water sources, seasonal variation and residual chlorine) on presence of thermotolerant coliforms bacteria in different drinking water resources. International Journal of Pharmacy and Technology, 7(3), 9680-9689.
[18] Zatta, P., Lucchini, R., van Rensburg, S. J., & Taylor, A. (2003). The role of metals in neurodegenerative processes: aluminum, manganese, and zinc. Brain research bulletin, 62(1), 15-28.
[19] Edition, F. (2011). Guidelines for drinking-water quality. WHO chronicle, 38(4), 104-8.
[20] Lokhande, R. S., Singare, P. U., & Pimple, D. S. (2011). Pollution in water of Kasardi River flowing along Taloja industrial area of Mumbai, India. World Environment, 1(1), 6-13.
[21] Richardson, S. D., & Postigo, C. (2011). Drinking water disinfection by-products. In Emerging organic contaminants and human health (pp. 93-137). Springer, Berlin, Heidelberg.
[22] M. M. Lasat, “Phytoextraction of metals from contaminated soil: a review of plant/soil/metal interaction and assessment of pertinent agronomic issues,†Journal of Hazardous Substance Research, vol. 2, no. 5, pp. 1–25, 2000.
[23] Gaur and A. Adholeya, “Prospects of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils,†Current Science, vol. 86, no. 4, pp. 528–534, 2004.
[24] Damalas, C. A., & Eleftherohorinos, I. G. (2011). Pesticide exposure, safety issues, and risk assessment indicators. International journal of environmental research and public health, 8(5), 1402-1419.
[25] Kim, E. J., Herrera, J. E., Huggins, D., Braam, J., & Koshowski, S. (2011). Effect of pH on the concentrations of lead and trace contaminants in drinking water: A combined batch, pipe loop and sentinel home study. Water research, 45(9), 2763-2774.
[26] Guidelines for drinking-water quality, 2nd ed. Vol. 2. Health criteria and other supporting information, World Health Organization, Geneva, 1996.
[27] Kanadhia, K. C., Ramavataram, D. V. S. S., Nilakhe, S. P. D., & Patel, S. (2014). A study of water hardness and the prevalence of hypomagnesaemia and hypocalcaemia in healthy subjects of Surat district (Gujarat). Magnesium research, 27(4), 165-174.
[28] Xie, Y. (2016). Disinfection byproducts in drinking water: Formation, analysis, and control. CRC Press.
[29] Ismail, A., Toriman, M. E., Juahir, H., Zain, S. M., Habir, N. L. A., Retnam, A., ... & Azid, A. (2016). Spatial assessment and source identification of heavy metals pollution in surface water using several chemometric techniques. Marine pollution bulletin, 106(1), 292-300.
[30] Al-Odaini, N. A., Zakaria, M. P., Zali, M. A., Juahir, H., Yaziz, M. I., & Surif, S. (2012). Application of chemometrics in understanding the spatial distribution of human pharmaceuticals in surface water. Environmental monitoring and assessment, 184(11), 6735-6748.
[31] Juahir, H., Zain, S. M., Aris, A. Z., Yusof, M. K., Samah, M. A. A., & Mokhtar, M. (2010). Hydrological trend analysis due to land use changes at Langat River Basin. Environment Asia, 3(2010), 20-31.
[32] Aris, A. Z., Abdullah, M. H., Praveena, S. M., Yusoff, M. K., & Juahir, H. (2010). Extenuation of saline solutes in shallow aquifer of a small tropical island: a case study of Manukan Island, North Borneo. Environment Asia, 3, 84-92.
-
Downloads
-
How to Cite
M. Zolkipli, H., Juahir, H., Adiana, G., Zainuddin, N., B. H. M. Maliki, A., E. Toriman, M., Mokhtar, M., & Elfitri, R. (2018). Spatial Assessment of Selangor, Malaysia Water Treatment Plant Performance Using Chemometric Technique. International Journal of Engineering & Technology, 7(3.14), 139-146. https://doi.org/10.14419/ijet.v7i3.14.16874Received date: 2018-08-05
Accepted date: 2018-08-05
Published date: 2018-07-25