Volatile Organic Compound Analysis by Sorbent Tube-Thermal Desorption-Gas Chromatography: A Review

  • Authors

    • Md Firoz Khan
    • Mazrura Sahani
    • Mohd Shahrul Mohd Nadzir
    • Lin Chin Yik
    • Hossain Mohammad Syedul Hoque
    • Haris Hafizal Abd Hamid
    • Muhammad Ikram A. Wahab
    • Fahia Tarannum Munna
    • Nowshad Amin
    • Halina Misran
    • Md Akhtaruzzaman
    • Khairul Nizam Abdul Maulud
    • Hafizan Juahir
    • Adiana Ghazali
    • Azimah Ismail
    2018-07-25
    https://doi.org/10.14419/ijet.v7i3.14.16878
  • Detection, Ozone precursors, Method optimization, Biomass burning, Biogenic VOCs.
  • Abstract

    Volatile organic compounds (VOCs) play an important role in the generation of ground level ozone and secondary organic aerosol. Most tropical countries such as Malaysia, Singapore, Indonesia, Brunei experience high ozone pollution. Beside ozone, oxides of nitrogen (NOx) from vehicular emissions also play an important role in photochemical pollution. NOx, particularly nitric oxide (NO), helps to ‘clean up’ ozone concentrations close to traffic in the ambient air of urban areas. Thus, knowledge of the chemistry of ozone-VOCs-NOx and finding the sources of VOCs are crucial to proceed with an appropriate mitigation strategy. Thus, the detection of ozone precursors and related VOCs is thoroughly discussed. This review finds that the inertness, hydrophobicity, and the effect of the artefact materials are very significant factors to be explored in the selection of the sorbent materials. In the SEA region, relative humidity is relatively high and exceeds 90% during the northeast monsoon. Thus, the hydrophobic properties of the sampling material need careful consideration. Further to the effect of relative humidity (RH), the artefact effect of the material itself is a challenge to be optimized and multi-sorbent material in a single tube could be a viable choice to minimize the effect of the unwanted signal in the spectrum.

     

     

     

     

     
  • References

    1. [1] Brown, V. M.; Crump, D. R. (2013), An investigation into the performance of a multi-sorbent sampling tube for the measurement of VVOC and VOC emissions from products used indoors. Analytical Methods, 5, (11), 2746-2756.

      [2] Dewulf, J.; Van Langenhove, H. (1999), Anthropogenic volatile organic compounds in ambient air and natural waters: a review on recent developments of analytical methodology, performance and interpretation of field measurements. Journal of Chromatography A, 843, (1–2), 163-177.

      [3] Atkinson, R. (2000), Atmospheric chemistry of VOCs and NOx. Atmospheric Environment, 34, (12–14), 2063-2101.

      [4] Derwent, R. G.; Jenkin, M. E.; Saunders, S. M. (1996), Photochemical ozone creation potentials for a large number of reactive hydrocarbons under European conditions. Atmospheric Environment, 30, (2), 181-199.

      [5] Do, D. H.; Walgraeve, C.; Amare, A. N.; Barai, K. R.; Parao, A. E.; Demeestere, K.; van Langenhove, H. (2015), Airborne volatile organic compounds in urban and industrial locations in four developing countries. Atmospheric Environment, 119, 330-338.

      [6] Sahu, L. (2012), Volatile organic compounds and their measurements in the troposphere. Current Science(Bangalore), 102, (12), 1645-1649.

      [7] Brasseur, G.; Orlando, J. J.; Tyndall, G. S., Atmospheric chemistry and global change. Oxford University Press: 1999.

      [8] Hewitt, C. N., Reactive hydrocarbons in the atmosphere. Academic press: 1998.

      [9] Hosaini, P. N.; Khan, M. F.; Mustaffa, N. I. H.; Amil, N.; Mohamad, N.; Jaafar, S. A.; Nadzir, M. S. M.; Latif, M. T. (2017), Concentration and source apportionment of volatile organic compounds (VOCs) in the ambient air of Kuala Lumpur, Malaysia. Natural Hazards, 85, (1), 437-452.

      [10] Schenkel, D.; Lemfack, M. C.; Piechulla, B.; Splivallo, R. (2015), A meta-analysis approach for assessing the diversity and specificity of belowground root and microbial volatiles. Frontiers in Plant Science, 6, 707.

      [11] Garcia-Alcega, S.; Nasir, Z. A.; Ferguson, R.; Whitby, C.; Dumbrell, A. J.; Colbeck, I.; Gomes, D.; Tyrrel, S.; Coulon, F. (2017), Fingerprinting outdoor air environment using microbial volatile organic compounds (MVOCs) – A review. TrAC Trends in Analytical Chemistry , 86, 75-83.

      [12] Guenther, A.; Hewitt, C. N.; Erickson, D.; Fall, R.; Geron, C.; Graedel, T.; Harley, P.; Klinger, L.; Lerdau, M.; McKay, W. A.; Pierce, T.; Scholes, B.; Steinbrecher, R. (1995); Tallamraju, R.; Taylor, J.; Zimmerman, P., A global model of natural volatile organic compound emissions. Journal of Geophysical Research: Atmospheres, 100, (D5), 8873-8892.

      [13] Guenther, C. (2006), Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmospheric Chemistry and Physics, 6.

      [14] Grutzen, P. J.; Andreae, M. O. (1990), Biomass burning in the tropics: Impact on atmospheric chemistry and biogeochemical cycles. Science, 250, (4988), 1669-1678.

      [15] Andreae, M. O.; Merlet, P. (2001), Emission of trace gases and aerosols from biomass burning. Global Biogeochemical Cycles, 15, (4), 955-966.

      [16] de Gouw, J.; Warneke, C. (2007), Measurements of volatile organic compounds in the earth's atmosphere using proton-transfer-reaction mass spectrometry. Mass Spectrometry Reviews, 26, (2), 223-257.

      [17] Friedli, H. R.; Atlas, E.; Stroud, V. R.; Giovanni, L.; Campos, T.; Radke, L. F. (2001), Volatile organic trace gases emitted from North American wildfires. Global Biogeochemical Cycles, 15, (2), 435-452.

      [18] Amil, N.; Latif, M. T.; Khan, M. F (2014). In Characterization and Source Apportionment of Fine Particulate Matter during 2011 Haze Episode in UKM Bangi, Malaysia, Springer Singapore: Singapore; pp 363-367.

      [19] Chai, M.; Pawliszyn, J. (1995), Analysis of environmental air samples by solid-phase microextraction and gas chromatography/ion trap mass spectrometry. Environmental science & technology, 29, (3), 693-701.

      [20] Harper, M. (2000), Sorbent trapping of volatile organic compounds from air. Journal of Chromatography A, 885, (1–2), 129-151.

      [21] Umar, A. A.; Salleh, M. M.; Yahaya, M (2012). In Optical electronic nose based on Fe (III) complex of porphyrins films for detection of volatile compounds, Key Engineering Materials; Trans Tech Publ: 2012; pp 75-78.

      [22] Arshad, S.; Salleh, M. M.; Yahaya, M. (2008), Quartz Crystal Microbalance Gas Sensor for Detection of Volatile Organic Compounds using Titanium Dioxide coated with Dye-porphyrin. Solid State Science and Technology, 16, (1), 75-84.

      [23] Yusoff, N. H.; Salleh, M. M.; Yahaya, M (2013). In Room Temperature Fluorescence Gas Sensor Based on Coated TiO2 Nanoparticles, Key Engineering Materials, 2013; Trans Tech Publ; pp 373-376.

      [24] Seinfeld, J. H.; Pandis, S. N., Atmospheric chemistry and physics: from air pollution to climate change John Wiley & Sons, Inc.: New Jersey, USA, 2006.

      [25] Hester, R. E.; Harrison, R. M., Volatile organic compounds in the atmosphere. Royal Society of Chemistry: 1995.

      [26] Liu, Y.; Shao, M.; Fu, L.; Lu, S.; Zeng, L.; Tang, D. (2008), Source profiles of volatile organic compounds (VOCs) measured in China: Part I. Atmospheric Environment, 42, (25), 6247-6260.

      [27] Helmig, D.; Thompson, C. R.; Evans, J.; Boylan, P.; Hueber, J.; Park, J. H. (2014), Highly Elevated Atmospheric Levels of Volatile Organic Compounds in the Uintah Basin, Utah. Environmental Science & Technology, 48, (9), 4707-4715.

      [28] Kumar, A.; Singh, B. P.; Punia, M.; Singh, D.; Kumar, K.; Jain, V. K. (2013), Assessment of indoor air concentrations of VOCs and their associated health risks in the library of Jawaharlal Nehru University, New Delhi. Environmental Science and Pollution Research, 21, (3), 2240-2248.

      [29] Ware, J. H.; Spengler, J. D.; Neas, L. M.; Samet, J. M.; Wagner, G. R.; Coultas, D.; Ozkaynak, H.; Schwab, M. (1993), Respiratory and Irritant Health Effects of Ambient Volatile Organic Compounds: The Kanawha County Health Study. American Journal of Epidemiology, 137, (12), 1287-1301.

      [30] Zhu, X.; Liu, Y. (2013), Characterization and Risk Assessment of Exposure to Volatile Organic Compounds in Apartment Buildings in Harbin, China. Bulletin of Environmental Contamination and Toxicology, 92, (1), 96-102.

      [31] Colman Lerner, J. E.; Sanchez, E. Y.; Sambeth, J. E.; Porta, A. A. (2012), Characterization and health risk assessment of VOCs in occupational environments in Buenos Aires, Argentina. Atmospheric Environment, 55, 440-447.

      [32] Ras-Mallorquí, M. R.; Marcé-Recasens, R. M.; Borrull-Ballarín, F. (2007), Determination of volatile organic compounds in urban and industrial air from Tarragona by thermal desorption and gas chromatography–mass spectrometry. Talanta, 72, (3), 941-950.

      [33] Hughes, C.; Chuck, A. L.; Rossetti, H.; Mann, P. J.; Turner, S. M.; Clarke, A.; Chance, R.; Liss, P. S. (2009), Seasonal cycle of seawater bromoform and dibromomethane concentrations in a coastal bay on the western Antarctic Peninsula. Global Biogeochemical Cycles, 23, (2), GB2024.

      [34] Woolfenden, E. (1997), Monitoring VOCs in Air Using Sorbent Tubes Followed by Thermal Desorption-Capillary GC Analysis: Summary of Data and Practical Guidelines. Journal of the Air & Waste Management Association, 47, (1), 20-36.

      [35] Kim, Y. H.; Kim, K. H. (2012), Novel approach to test the relative recovery of liquid-phase standard in sorbent-tube analysis of gaseous volatile organic compounds. Analytical Chemistry, 84, (9), 4126-4139.

      [36] Clément, M.; Arzel, S.; Le Bot, B.; Seux, R.; Millet, M. (2000), Adsorption/thermal desorption-GC/MS for the analysis of pesticides in the atmosphere. Chemosphere, 40, (1), 49-56.

      [37] Gao, Q.; Sha, Y.; Wu, D.; Liu, B.; Chen, C.; Fang, D. (2012), Analysis of the volatile components emitted from cut tobacco processing by gas chromatography/mass spectrometry thermal desorption system. Talanta, 101, 198-202.

      [38] Rodríguez-Navas, C.; Forteza, R.; Cerdà , V. (2012), Use of thermal desorption–gas chromatography–mass spectrometry (TD–GC–MS) on identification of odorant emission focus by volatile organic compounds characterisation. Chemosphere , 89, (11), 1426-1436.

      [39] Ras, M. R.; Borrull, F.; Marcé, R. M. (2009), Sampling and preconcentration techniques for determination of volatile organic compounds in air samples. TrAC Trends in Analytical Chemistry, 28, (3), 347-361.

      [40] Dettmer, K.; Engewald, W. (2003), Ambient air analysis of volatile organic compounds using adsorptive enrichment. Chromatographia, 57, (1), S339-S347.

      [41] Woolfenden, E. (2010), Sorbent-based sampling methods for volatile and semi-volatile organic compounds in air. Part 2. Sorbent selection and other aspects of optimizing air monitoring methods. Journal of Chromatography A, 1217, (16), 2685-2694.

      [42] Wu, C.-H.; Feng, C.-T.; Lo, Y.-S.; Lin, T.-Y.; Lo, J.-G. (2004), Determination of volatile organic compounds in workplace air by multisorbent adsorption/thermal desorption-GC/MS. Chemosphere, 56, (1), 71-80.

      [43] Maceira, A.; Vallecillos, L.; Borrull, F.; Marcé, R. M. (2017), New approach to resolve the humidity problem in VOC determination in outdoor air samples using solid adsorbent tubes followed by TD-GC–MS. Science of the Total Environment , 599-600, 1718-1727.

      [44] Ho, S. S. H.; Chow, J. C.; Watson, J. G.; Wang, L.; Qu, L.; Dai, W.; Huang, Y.; Cao, J. (2017), Influences of relative humidities and temperatures on the collection of C2-C5 aliphatic hydrocarbons with multi-bed (Tenax TA, Carbograph 1TD, Carboxen 1003) sorbent tube method. Atmospheric Environment , 151, 45-51.

      [45] Cao, X.-L.; Hewitt, C. N. (1994), Build-up of artifacts on adsorbents during storage and its effect on passive sampling and gas chromatography-flame ionization detection of low concentrations of volatile organic compounds in air. Journal of Chromatography A, 688, (1-2), 368-374.

      [46] Gallego, E.; Roca, F.; Perales, J.; Guardino, X. (2010), Comparative study of the adsorption performance of a multi-sorbent bed (Carbotrap, Carbopack X, Carboxen 569) and a Tenax TA adsorbent tube for the analysis of volatile organic compounds (VOCs). Talanta, 81, (3), 916-924.

      [47] Brown, R. (1996), What is the best sorbent for pumped sampling–thermal desorption of volatile organic compounds? Experience with the EC sorbents project. Analyst, 121, (9), 1171-1175.

      [48] Filipiak, W.; Ruzsanyi, V.; Mochalski, P.; Filipiak, A.; Bajtarevic, A.; Ager, C.; Denz, H.; Hilbe, W.; Jamnig, H.; Hackl, M.; Dzien, A.; Amann, A. (2012), Dependence of exhaled breath composition on exogenous factors, smoking habits and exposure to air pollutants. Journal of Breath Research, 6, (3), 036008.

      [49] Gallego, E.; Roca, F. J.; Perales, J. F.; Guardino, X. (2011), Comparative study of the adsorption performance of an active multi-sorbent bed tube (Carbotrap, Carbopack X, Carboxen 569) and a Radiello® diffusive sampler for the analysis of VOCs. Talanta, 85, (1), 662-672.

      [50] Li, Q.-L.; Yuan, D.-X.; Lin, Q.-M. (2004), Evaluation of multi-walled carbon nanotubes as an adsorbent for trapping volatile organic compounds from environmental samples. Journal of Chromatography A, 1026, (1–2), 283-288.

      [51] Terzic, O.; Swahn, I.; Cretu, G.; Palit, M.; Mallard, G. (2012), Gas chromatography–full scan mass spectrometry determination of traces of chemical warfare agents and their impurities in air samples by inlet based thermal desorption of sorbent tubes. Journal of Chromatography A, 1225, 182-192.

      [52] Wang, X.; Ma, X.; Song, C.; Locke, D. R.; Siefert, S.; Winans, R. E.; Möllmer, J.; Lange, M.; Möller, A.; Gläser, R. (2013), Molecular basket sorbents polyethylenimine–SBA-15 for CO2 capture from flue gas: Characterization and sorption properties. Microporous and Mesoporous Materials, 169, 103-111.

      [53] Wu, Y.; Chang, V. W. C. (2012), Development of analysis of volatile polyfluorinated alkyl substances in indoor air using thermal desorption-gas chromatography–mass spectrometry. Journal of Chromatography A, 1238, 114-120.

      [54] Shih, Y.-H., Li, M.-S. (2008)., Adsorption of selected volatile organic vapors on multiwall carbon nanotubes. Journal of Hazardous Materials, 154, (1), 21-28.

      [55] Liaud, C., Nguyen, N. T., Nasreddine, R., & Le Calvé, S. (2014). Experimental performances study of a transportable GC-PID and two thermo-desorption based methods coupled to FID and MS detection to assess BTEX exposure at sub-ppb level in air. Talanta, 127, 33-42.

      [56] Terzic, O., Swahn, I., Cretu, G., Palit, M., & Mallard, G. (2012). Gas chromatography–full scan mass spectrometry determination of traces of chemical warfare agents and their impurities in air samples by inlet based thermal desorption of sorbent tubes. Journal of Chromatography A, 1225, 182-192.

      [57] Caro, J., & Gallego, M. (2008). Development of a sensitive thermal desorption method for the determination of trihalomethanes in humid ambient and alveolar air. Talanta, 76(4), 847-853.

      [58] Ramírez, N., Cuadras, A., Rovira, E., Borrull, F., & Marcé, R. M. (2010). Comparative study of solvent extraction and thermal desorption methods for determining a wide range of volatile organic compounds in ambient air. Talanta, 82(2), 719-727.

      [59] Mariné, S., Pedrouzo, M., Marcé, R. M., Fonseca, I., & Borrull, F. (2012). Comparison between sampling and analytical methods in characterization of pollutants in biogas. Talanta, 100, 145-152.

      [60] Clément, M., Arzel, S., Le Bot, B., Seux, R., & Millet, M. (2000). Adsorption/thermal desorption-GC/MS for the analysis of pesticides in the atmosphere. Chemosphere, 40(1), 49-56.

      [61] Walgraeve, C., Demeestere, K., Dewulf, J., Van Huffel, K., & Van Langenhove, H. (2011). Uptake rate behavior of tube-type passive samplers for volatile organic compounds under controlled atmospheric conditions. Atmospheric Environment, 45(32), 5872-5879.

      [62] Pech, A., Wilke, O., Mull, B., Horn, W., & Jann, O. (2013). Development of a TDS-GC-FID method for the determination of methanol and ethanol in air. Bundesanstalt für Materialforschung und-prüfung (BAM).

      [63] Kim, Y. H., & Kim, K. H. (2012). Novel approach to test the relative recovery of liquid-phase standard in sorbent-tube analysis of gaseous volatile organic compounds. Analytical Chemistry, 84(9), 4126-4139.

      [64] Kim, K. H., Kim, Y. H., & Brown, R. J. (2013). Conditions for the optimal analysis of volatile organic compounds in air with sorbent tube sampling and liquid standard calibration: demonstration of solvent effect. Analytical and Bioanalytical Chemistry, 405(26), 8397-8408.

  • Downloads

  • How to Cite

    Firoz Khan, M., Sahani, M., Shahrul Mohd Nadzir, M., Chin Yik, L., Mohammad Syedul Hoque, H., Hafizal Abd Hamid, H., Ikram A. Wahab, M., Tarannum Munna, F., Amin, N., Misran, H., Akhtaruzzaman, M., Nizam Abdul Maulud, K., Juahir, H., Ghazali, A., & Ismail, A. (2018). Volatile Organic Compound Analysis by Sorbent Tube-Thermal Desorption-Gas Chromatography: A Review. International Journal of Engineering & Technology, 7(3.14), 165-175. https://doi.org/10.14419/ijet.v7i3.14.16878

    Received date: 2018-08-05

    Accepted date: 2018-08-05

    Published date: 2018-07-25