Some Factors Affecting on Magnetic Characteristic Quantities and Tc Curie Phase Transition Temperature of the Ni Nanoparticles by the Classical Heisenberg Model

  • Authors

    • Nguyen Trong Dung
    • Pham Khac Hung
    2018-09-07
    https://doi.org/10.14419/ijet.v7i3.19.16998
  • influence, particle size, rate of heat, Tc Curie transition temperature, classical Heisenberg model.
  • Abstract

     This paper investigates the effect of particle size D = 4.51nm, 5.03nm, 5.42nm, 5.91nm, rate of heat 4.1012K/s, 4.1013K/s, 4.1014K/s on magnetic characteristic quantities: Magnetization M, specific heat Cv, energy E, magnetic susceptibility c and Tc Curie phase transition temperature by classical Heisenberg model. The results show when increasing D particle size then Tc Curie transition temperature increases and when increasing rate of heat then Tc decreasing. In addition, there is the influence of D size and heating rate on magnetic characteristic quantities.

     

     

  • References

    1. [1] Wang, H. Yin, M. Ren, H. Lu, J. Xue and T. Jiang, (2010), "Preparation of nickel nanoparticles with different sizes and structures and catalytic activity in the hydrogenation of p-nitrophenol", New J. Chem., 34, 708–713.

      [2] Y. G. Morozov, O. V. Belousova and M. V. Kuznetsov, (2011), "Electric field-assisted levitation-jet aerosol synthesis of Ni/NiO nanoparticles", Inorg, Mater., 47, 36–40

      [3] Y. Ruan, C. Wang and J. Jiang, (2016), "Nanostructured Ni compounds as electrode materials towards high-performance electrochemical capacitors", J. Mater. Chem. A, 4, 14509–14538.

      [4] L. Gaouyat, Z. He, J.-F. Colomer, D. Schryvers, F. Mirabella and O. Deparis, (2015), "in Linking Optical: Properties and Nanostructure of NiCrOx Cermet Nanocomposite for Solar Thermal Application ", Springer Netherlands, Nano-Structures for Optics and Photonics, pp 497-497

      [5] H. Schmidt, (2001), "Nanoparticles by chemical synthesis, processing to materials and innovative applications", Appl. Organomet. Chem., 15, 331–343.

      [6] K.-C. Huang and S. H. Ehrman, (2007), "Synthesis of Iron Nanoparticles via Chemical Reduction with Palladium Ion Seeds", Langmuir, 23, 1419–1426.

      [7] D. V. Goia, J. Mater, (2004), "Preparation and formation mechanisms of uniform metallic particles in homogeneous solutions", Chem., 14, 451–458.

      [8] N. S. Tabrizi, Q. Xu, N. M. van der Pers, U. Lafont and A. Schmidt-Ott, (2009), "Synthesis of mixed metallic nanoparticles by spark discharge", J. Nanopart. Res., 11, 1209.

      [9] H. F¨ roster, C. Wolfrum and W. Peukert, (2012), "Experimental study of metal nanoparticle synthesis by an arc evaporation / condensation process", J. Nanopart. Res., 14, 926.

      [10] Y. Qi, T. Ça˘gin, W. L. Johnson and W. A. Goddard III, (2001), "Melting and crystallization in Ni nanoclusters: The mesoscale regime", The Journal of Chemical Physics 115, PP 385-394.

      [11] Y.-H. Wen, Z.-Z. Zhu, R. Zhu and G.-F. Shao, (2004), "Size effects on the melting of nickel nanowires: a molecular dynamics study", Physica E: Low-dimensional Systems and Nanostructures, 25, pp 47 – 54.

      [12] Y. Zhang, L. Wang and W. Wang, (2007), "Thermodynamic, dynamic and structural relaxation in supercooled liquid and glassy Ni below the critical temperature", J. Phys.: Cond. Matt., 19, 196106.

      [13] L. Kelchner, S. J. Plimpton and J. C. Hamilton, (1998), "Dislocation nucleation and defect structure during surface indentation", Phys. Rev. B, 58, pp 11085–11088.

      [14] 14. A. N. Andriotis, Z. G. Fthenakis and M. Menon, (2007), "Correlated variation of melting and Curie temperatures of nickel clusters", Phys. Rev. B, 75, 073413.

      [15] 15. C. S. Tian, D. Qian, D. Wu, et, (2005), "Body-Centered-Cubic Ni and Its Magnetic Properties", Phys. Rev. Lett., 94, 137210.

      [16] 16. X. He, H. Shi, (2012), "Size and shape effects on magnetic properties of Ni nanoparticles", Particuology 10 (4), pp 497–502.

      [17] 17. C. Q. Sun, W. H. Zhong, S. Li, B. K. Tay, H. L. Bai, E. Y. Jiang, (2004), "Coordination imperfection suppressed phase stability of ferromagnetic, ferroelectric, and superconductive nano solids", The Journal of Physical Chemistry 235 B 108 (3), pp 1080–1084.

      [18] 18. A. Zaim, M. Kerouad, M. Boughrara, (2013), "Monte Carlo study of the magnetic behavior of a mixed spin (1, 3/2) ferrimagnetic nanoparticle", Solid State Communications 158, 76–81.

      [19] 19. C. Saikia, A. Hussain, A. Ramteke, H. K. Sharma, T. K. Maji, (2014), "Carboxymethyl starch-chitosan-coated iron oxide magnetic nanoparticles for controlled delivery of isoniazid", Journal of Microencapsulation 32 (1), pp 29–39. doi:10.3109/02652048.2014.940015. 13

      [20] 20. D. Caruntu, G. Caruntu, C. J. O’Connor, (2007) "Magnetic properties of variable-sized Fe3O4 nanoparticles synthesized from non-aqueous homogeneous solutions of polyols", Journal of Physics D: Applied Physics 40 (19), pp5801–5809.

      [21] 21. G. F. Goya, T. S. Berqu´o, F. C. Fonseca, M. P. Morales, (2003), "Static and dynamic magnetic properties of spherical magnetite nanoparticles", Journal of Applied Physics 94 (5), pp 3520–3528.

      [22] 22. M. Jeun, S. Lee, J. K. Kang, A. Tomitaka, K. W. Kang, Y. I. Kim, Y. Takemura, K.-W. Chung, J. Kwak, S. Bae, (2012), "Physical limits of pure superparamagnetic Fe3O4 nanoparticles for a local hyperthermia agent in nanomedicine", Applied Physics Letters 100 (9), 092406.

      [23] 23. Q. Jiang, X. Cui, M. Zhao, (2004), "Size effects on curie temperature of ferroelectric particles", Applied Physics A: Materials Science & Processing 78 (5), pp 703–704.

      [24] 24. Z. Huang, Z. Chen, S. Li, Q. Feng, F. Zhang, Y. Du, (2006), "Effects of size and surface anisotropy on thermal magnetization and hysteresis in the magnetic clusters", The European Physical Journal B 51 (1), pp 65–73.

      [25] 25. Xuehong Liao, Junjie Zhu, Wei Zhong, Hong-Yuan Chen, (2001), "Synthesis of amorphous Fe2O3 nanoparticles by microwave irradiation", Materials Letters, Vol 50, Issues 5–6, pp 341-346.

      [26] 26. K. Ishikawa, K. Yoshikawa, N. Okada, (1988), "Size effect on the ferroelectric phase transition in PbTiO3 ultrafine particles", Physical Review B 37 (10), 5852–5855.

      [27] 27. W. L. Zhong, B. Jiang, P. L. Zhang, J. M. Ma, H. M. Cheng, Z. H. Yang, (1993) "Phase transition in PbTiO3 ultrafine particles of different sizes", Journal of Physics: Condensed Matter 5 (16), pp 2619–2624.

      [28] 28. X. He, H. Shi, (2012), "Size and shape effects on magnetic properties of Ni nanoparticles", Particuology 10 (4), pp 497–502.

      [29] 29. H. M. Lu, W. T. Zheng, Q. Jiang, (2007), "Saturation magnetization of ferromagnetic and ferrimagnetic nanocrystals at room temperature", Journal of Physics D: Applied Physics 40 (2), pp 320–325.

      [30] 30. Trong Dung Nguyen, Chinh Cuong Nguyen and Vinh Hung Tran, (2017), "Molecular dynamics study of microscopic structures, phase transitions and dynamic crystallization in Ni nanoparticles", RSC Adv, 7, 25406.

      [31] 31. Trong Dung Nguyen, Chinh Cuong Nguyen, The Toan Nguyen, Khac Hung Pham, (2018), "Factors on the magnetic properties of the iron nanoparticles by classical Heisenberg model", Physica B 532 144–148.

      [32] 32. C. P. Chui and Yan Zhou, (2014), "Investigating the magneto volume effect in isotropic body-centered-cubic iron using spin-lattice dynamics simulations", Aip advances 4, pp. 087123/10

      [33] 33. P. W. Ma, S. L. Dudarev, A. A. Semenov and C. H. Woo, (2010), "Temperature for a dynamic spin ensemble", Phys Rev E 82, pp. 031111/6

      [34] 34. P.-W. Ma, C. H. Woo, and S. L. Dudarev, (2008), "Large-scale simulation of the spin-lattice dynamics in ferromagnetic iron", Phys. Rev. B 78, pp. 024434/12

      [35] 35. Ahmed Zaim and Mohamed Kerouad, (2010), "Monte Carlo study of the possibility of two compensation points in a ferrimagnetic core/shell nanoparticle Ising model" M. J. Condensed Matter. Vol. 12, number 2, pp. 77-80

      [36] 36. C. Yang, Q. Jiang, (2005), "Size and interface effects on critical temperatures of ferromagnetic, ferroelectric and superconductive nanocrystals", Acta Mate-Aurilia 53 (11), 3305–3311.

      [37] 37. Jiang, Q., Zhao, D. S., & Zhao, M, (2001), "Size-dependent interface energy and related interface stress". Acta Materialia, 49, pp 3143–3147.

      [38] 38. H. Wang, Y. Zhou, D. Lin, C. Wang, (2002), "Phase diagram of ising nano- particles with cubic structures", Physica Status Solidi (b) 232 (2), pp 254–263.

      [39] 39. P.-W. Ma, C. Woo, S. Dudarev, (2009), "High-temperature dynamics of surface magnetism in iron thin films", Philosophical Magazine 89 (32), 2921– 2933.

      [40] 40. Q. Jiang, D. Zhao, M. Zhao, (2001), "Size-dependent interface energy and related interface stress", Acta Materialia 49 (16), pp 3143–3147.

      [41] 41. RC Weast, MJ Astle, WH Beyer, (1989), "CRC Handbook of Chemistry and Physics", 69th Edition, CRC Press., Inc.,.

      [42] 42. V. T. Ngo, H. T. Diep, (2007), "Effects of frustrated surface in heisenberg thin films", Physical Review B 75, 035412,

      [43] 43. S. Nos´ e, (1984), "A unified formulation of the constant temperature molecular dynamics methods", J. Chem. Phys., 81, pp. 511–519.

      [44] 44. W. G. Hoover, (1985), "Canonical dynamics: Equilibrium phase-space distributions", Phys. Rev. A, 31, pp. 1695–1697.

      [45] 45. C. L. Kelchner, S. J. Plimpton and J. C. Hamilton, (1998), " Dislocation nucleation and defect structure during surface indentation", Phys. Rev. B, 58, pp 11085–11088.

      [46] 46. G. J. Ackland and A. P. Jones, (2006), "Applications of local crystal structure measures in experiment and simulation", Phys. Rev. B, 73, pp. 054104/7.

      [47] 47. J. Li, (2003), "AtomEye: an efficient atomistic configuration viewer", Model Simul Mater Sci Eng, 11, pp. 173-177.

      [48] 48. P. J. Steinhardt, D. R. Nelson and M. Ronchetti, (1983), "Bond-orientational order in liquids and glasses", Phys. Rev. B, 28, pp. 784–805.

      [49] 49. H. Amekura, Y. Fudamoto, Y. Takeda, and N. Kishimoto, (2005), "Curie transition of superparamagnetic nickel nanoparticles in silica glass: A phase transition in a finite size system", Physical Review B 71, 172404.

      [50] 50. Aitor F. Lopeandía, F. Pi, and J. Rodríguez-Viejo, (2008), "Nanocalorimetric analysis of the ferromagnetic transition in ultrathin films of nickel", Applied Physics Letters 92, 122503.

  • Downloads

  • How to Cite

    Trong Dung, N., & Khac Hung, P. (2018). Some Factors Affecting on Magnetic Characteristic Quantities and Tc Curie Phase Transition Temperature of the Ni Nanoparticles by the Classical Heisenberg Model. International Journal of Engineering & Technology, 7(3.19), 113-118. https://doi.org/10.14419/ijet.v7i3.19.16998

    Received date: 2018-08-06

    Accepted date: 2018-08-06

    Published date: 2018-09-07