Some Factors Affecting on Magnetic Characteristic Quantities and Tc Curie Phase Transition Temperature of the Ni Nanoparticles by the Classical Heisenberg Model
-
Received date: August 6, 2018
Accepted date: August 6, 2018
Published date: September 7, 2018
https://doi.org/10.14419/ijet.v7i3.19.16998
-
influence, particle size, rate of heat, Tc Curie transition temperature, classical Heisenberg model. -
Abstract
 This paper investigates the effect of particle size D = 4.51nm, 5.03nm, 5.42nm, 5.91nm, rate of heat 4.1012K/s, 4.1013K/s, 4.1014K/s on magnetic characteristic quantities: Magnetization M, specific heat Cv, energy E, magnetic susceptibility c and Tc Curie phase transition temperature by classical Heisenberg model. The results show when increasing D particle size then Tc Curie transition temperature increases and when increasing rate of heat then Tc decreasing. In addition, there is the influence of D size and heating rate on magnetic characteristic quantities.
Â
Â
-
References
[1] Wang, H. Yin, M. Ren, H. Lu, J. Xue and T. Jiang, (2010), "Preparation of nickel nanoparticles with different sizes and structures and catalytic activity in the hydrogenation of p-nitrophenol", New J. Chem., 34, 708–713.
[2] Y. G. Morozov, O. V. Belousova and M. V. Kuznetsov, (2011), "Electric field-assisted levitation-jet aerosol synthesis of Ni/NiO nanoparticles", Inorg, Mater., 47, 36–40
[3] Y. Ruan, C. Wang and J. Jiang, (2016), "Nanostructured Ni compounds as electrode materials towards high-performance electrochemical capacitors", J. Mater. Chem. A, 4, 14509–14538.
[4] L. Gaouyat, Z. He, J.-F. Colomer, D. Schryvers, F. Mirabella and O. Deparis, (2015), "in Linking Optical: Properties and Nanostructure of NiCrOx Cermet Nanocomposite for Solar Thermal Application ", Springer Netherlands, Nano-Structures for Optics and Photonics, pp 497-497
[5] H. Schmidt, (2001), "Nanoparticles by chemical synthesis, processing to materials and innovative applications", Appl. Organomet. Chem., 15, 331–343.
[6] K.-C. Huang and S. H. Ehrman, (2007), "Synthesis of Iron Nanoparticles via Chemical Reduction with Palladium Ion Seeds", Langmuir, 23, 1419–1426.
[7] D. V. Goia, J. Mater, (2004), "Preparation and formation mechanisms of uniform metallic particles in homogeneous solutions", Chem., 14, 451–458.
[8] N. S. Tabrizi, Q. Xu, N. M. van der Pers, U. Lafont and A. Schmidt-Ott, (2009), "Synthesis of mixed metallic nanoparticles by spark discharge", J. Nanopart. Res., 11, 1209.
[9] H. F¨ roster, C. Wolfrum and W. Peukert, (2012), "Experimental study of metal nanoparticle synthesis by an arc evaporation / condensation process", J. Nanopart. Res., 14, 926.
[10] Y. Qi, T. Ça˘gin, W. L. Johnson and W. A. Goddard III, (2001), "Melting and crystallization in Ni nanoclusters: The mesoscale regime", The Journal of Chemical Physics 115, PP 385-394.
[11] Y.-H. Wen, Z.-Z. Zhu, R. Zhu and G.-F. Shao, (2004), "Size effects on the melting of nickel nanowires: a molecular dynamics study", Physica E: Low-dimensional Systems and Nanostructures, 25, pp 47 – 54.
[12] Y. Zhang, L. Wang and W. Wang, (2007), "Thermodynamic, dynamic and structural relaxation in supercooled liquid and glassy Ni below the critical temperature", J. Phys.: Cond. Matt., 19, 196106.
[13] L. Kelchner, S. J. Plimpton and J. C. Hamilton, (1998), "Dislocation nucleation and defect structure during surface indentation", Phys. Rev. B, 58, pp 11085–11088.
[14] 14. A. N. Andriotis, Z. G. Fthenakis and M. Menon, (2007), "Correlated variation of melting and Curie temperatures of nickel clusters", Phys. Rev. B, 75, 073413.
[15] 15. C. S. Tian, D. Qian, D. Wu, et, (2005), "Body-Centered-Cubic Ni and Its Magnetic Properties", Phys. Rev. Lett., 94, 137210.
[16] 16. X. He, H. Shi, (2012), "Size and shape effects on magnetic properties of Ni nanoparticles", Particuology 10 (4), pp 497–502.
[17] 17. C. Q. Sun, W. H. Zhong, S. Li, B. K. Tay, H. L. Bai, E. Y. Jiang, (2004), "Coordination imperfection suppressed phase stability of ferromagnetic, ferroelectric, and superconductive nano solids", The Journal of Physical Chemistry 235 B 108 (3), pp 1080–1084.
[18] 18. A. Zaim, M. Kerouad, M. Boughrara, (2013), "Monte Carlo study of the magnetic behavior of a mixed spin (1, 3/2) ferrimagnetic nanoparticle", Solid State Communications 158, 76–81.
[19] 19. C. Saikia, A. Hussain, A. Ramteke, H. K. Sharma, T. K. Maji, (2014), "Carboxymethyl starch-chitosan-coated iron oxide magnetic nanoparticles for controlled delivery of isoniazid", Journal of Microencapsulation 32 (1), pp 29–39. doi:10.3109/02652048.2014.940015. 13
[20] 20. D. Caruntu, G. Caruntu, C. J. O’Connor, (2007) "Magnetic properties of variable-sized Fe3O4 nanoparticles synthesized from non-aqueous homogeneous solutions of polyols", Journal of Physics D: Applied Physics 40 (19), pp5801–5809.
[21] 21. G. F. Goya, T. S. Berqu´o, F. C. Fonseca, M. P. Morales, (2003), "Static and dynamic magnetic properties of spherical magnetite nanoparticles", Journal of Applied Physics 94 (5), pp 3520–3528.
[22] 22. M. Jeun, S. Lee, J. K. Kang, A. Tomitaka, K. W. Kang, Y. I. Kim, Y. Takemura, K.-W. Chung, J. Kwak, S. Bae, (2012), "Physical limits of pure superparamagnetic Fe3O4 nanoparticles for a local hyperthermia agent in nanomedicine", Applied Physics Letters 100 (9), 092406.
[23] 23. Q. Jiang, X. Cui, M. Zhao, (2004), "Size effects on curie temperature of ferroelectric particles", Applied Physics A: Materials Science & Processing 78 (5), pp 703–704.
[24] 24. Z. Huang, Z. Chen, S. Li, Q. Feng, F. Zhang, Y. Du, (2006), "Effects of size and surface anisotropy on thermal magnetization and hysteresis in the magnetic clusters", The European Physical Journal B 51 (1), pp 65–73.
[25] 25. Xuehong Liao, Junjie Zhu, Wei Zhong, Hong-Yuan Chen, (2001), "Synthesis of amorphous Fe2O3 nanoparticles by microwave irradiation", Materials Letters, Vol 50, Issues 5–6, pp 341-346.
[26] 26. K. Ishikawa, K. Yoshikawa, N. Okada, (1988), "Size effect on the ferroelectric phase transition in PbTiO3 ultrafine particles", Physical Review B 37 (10), 5852–5855.
[27] 27. W. L. Zhong, B. Jiang, P. L. Zhang, J. M. Ma, H. M. Cheng, Z. H. Yang, (1993) "Phase transition in PbTiO3 ultrafine particles of different sizes", Journal of Physics: Condensed Matter 5 (16), pp 2619–2624.
[28] 28. X. He, H. Shi, (2012), "Size and shape effects on magnetic properties of Ni nanoparticles", Particuology 10 (4), pp 497–502.
[29] 29. H. M. Lu, W. T. Zheng, Q. Jiang, (2007), "Saturation magnetization of ferromagnetic and ferrimagnetic nanocrystals at room temperature", Journal of Physics D: Applied Physics 40 (2), pp 320–325.
[30] 30. Trong Dung Nguyen, Chinh Cuong Nguyen and Vinh Hung Tran, (2017), "Molecular dynamics study of microscopic structures, phase transitions and dynamic crystallization in Ni nanoparticles", RSC Adv, 7, 25406.
[31] 31. Trong Dung Nguyen, Chinh Cuong Nguyen, The Toan Nguyen, Khac Hung Pham, (2018), "Factors on the magnetic properties of the iron nanoparticles by classical Heisenberg model", Physica B 532 144–148.
[32] 32. C. P. Chui and Yan Zhou, (2014), "Investigating the magneto volume effect in isotropic body-centered-cubic iron using spin-lattice dynamics simulations", Aip advances 4, pp. 087123/10
[33] 33. P. W. Ma, S. L. Dudarev, A. A. Semenov and C. H. Woo, (2010), "Temperature for a dynamic spin ensemble", Phys Rev E 82, pp. 031111/6
[34] 34. P.-W. Ma, C. H. Woo, and S. L. Dudarev, (2008), "Large-scale simulation of the spin-lattice dynamics in ferromagnetic iron", Phys. Rev. B 78, pp. 024434/12
[35] 35. Ahmed Zaim and Mohamed Kerouad, (2010), "Monte Carlo study of the possibility of two compensation points in a ferrimagnetic core/shell nanoparticle Ising model" M. J. Condensed Matter. Vol. 12, number 2, pp. 77-80
[36] 36. C. Yang, Q. Jiang, (2005), "Size and interface effects on critical temperatures of ferromagnetic, ferroelectric and superconductive nanocrystals", Acta Mate-Aurilia 53 (11), 3305–3311.
[37] 37. Jiang, Q., Zhao, D. S., & Zhao, M, (2001), "Size-dependent interface energy and related interface stress". Acta Materialia, 49, pp 3143–3147.
[38] 38. H. Wang, Y. Zhou, D. Lin, C. Wang, (2002), "Phase diagram of ising nano- particles with cubic structures", Physica Status Solidi (b) 232 (2), pp 254–263.
[39] 39. P.-W. Ma, C. Woo, S. Dudarev, (2009), "High-temperature dynamics of surface magnetism in iron thin films", Philosophical Magazine 89 (32), 2921– 2933.
[40] 40. Q. Jiang, D. Zhao, M. Zhao, (2001), "Size-dependent interface energy and related interface stress", Acta Materialia 49 (16), pp 3143–3147.
[41] 41. RC Weast, MJ Astle, WH Beyer, (1989), "CRC Handbook of Chemistry and Physics", 69th Edition, CRC Press., Inc.,.
[42] 42. V. T. Ngo, H. T. Diep, (2007), "Effects of frustrated surface in heisenberg thin films", Physical Review B 75, 035412,
[43] 43. S. Nos´ e, (1984), "A unified formulation of the constant temperature molecular dynamics methods", J. Chem. Phys., 81, pp. 511–519.
[44] 44. W. G. Hoover, (1985), "Canonical dynamics: Equilibrium phase-space distributions", Phys. Rev. A, 31, pp. 1695–1697.
[45] 45. C. L. Kelchner, S. J. Plimpton and J. C. Hamilton, (1998), " Dislocation nucleation and defect structure during surface indentation", Phys. Rev. B, 58, pp 11085–11088.
[46] 46. G. J. Ackland and A. P. Jones, (2006), "Applications of local crystal structure measures in experiment and simulation", Phys. Rev. B, 73, pp. 054104/7.
[47] 47. J. Li, (2003), "AtomEye: an efficient atomistic configuration viewer", Model Simul Mater Sci Eng, 11, pp. 173-177.
[48] 48. P. J. Steinhardt, D. R. Nelson and M. Ronchetti, (1983), "Bond-orientational order in liquids and glasses", Phys. Rev. B, 28, pp. 784–805.
[49] 49. H. Amekura, Y. Fudamoto, Y. Takeda, and N. Kishimoto, (2005), "Curie transition of superparamagnetic nickel nanoparticles in silica glass: A phase transition in a finite size system", Physical Review B 71, 172404.
[50] 50. Aitor F. LopeandÃa, F. Pi, and J. RodrÃguez-Viejo, (2008), "Nanocalorimetric analysis of the ferromagnetic transition in ultrathin films of nickel", Applied Physics Letters 92, 122503.
-
Downloads
-
How to Cite
Trong Dung, N., & Khac Hung, P. (2018). Some Factors Affecting on Magnetic Characteristic Quantities and Tc Curie Phase Transition Temperature of the Ni Nanoparticles by the Classical Heisenberg Model. International Journal of Engineering and Technology, 7(3.19), 113-118. https://doi.org/10.14419/ijet.v7i3.19.16998Received date: August 6, 2018
Accepted date: August 6, 2018
Published date: September 7, 2018