Region of Interest (ROI) for EEG Activity in Depressed Young Adult
-
2018-08-08 https://doi.org/10.14419/ijet.v7i3.22.17113 -
prefrontal cortex, depression, qEEG, beta, theta. -
Abstract
Several abnormal neural activities in regions such as dorsolateral prefrontal cortex (DLPFC) and prefrontal cortex (PFC) are known to be associated with depression. However most studies focused on major depression disorder and less on mild and moderate depression, moreover, these studies are mostly conducted in United State and European countries. This study uses data from 12 mild and moderately depressed and 12 healthy control young adult in Malaysia to examine the differences in brain activity via spectrum and coherence analysis in quantitative electroencephalography (qEEG). The study found that depressed group have higher beta on the anterior region that is found on people with depression and recurrent depression in previous studies, and higher theta on the prefrontal cortex may associate with deficits in attention and working memory in resting state compare to healthy control. Furthermore, left and right frontal showed low beta2 coherence that may indicate imbalance of functional processes.
Â
Â
-
References
[1] Mukhtar, F. & Oei, T.P.S. (2011), A review on assessment and treatment for depression in Malaysia. Depression Research and Treatment, 2011, 123642. http://doi.org/10.1155/2011/123642
[2] Hagemann, D., Naumann, E., & Thayer, J. F. (2001), The quest for the EEG reference revisited : A glance from brain asymmetry research. Psychophysiology, 38, 847–857.
[3] Mientus, S., Gallinat, J., Wuebben, Y., Pascual-Marqui, R. D., Mulert, C., Frick, K., Dorn, H., Hermann, W. M., & Winterer, G. (2002), Cortical hypoactivation during resting EEG in schizophrenics but not in depressives and schizotypal subjects as revealed by low resolution electromagnetic tomography (LORETA). Psychiatry Research - Neuroimaging, 116(1–2), 95–111. http://doi.org/10.1016/S0925-4927(02)00043-4A
[4] Ricardo-Garcell, J., González-olvera, J. J., Miranda, E., Harmony, T., Reyes, E., Almeida, L., Aubert, E. (2009), EEG sources in a group of patients with major depressive disorders. International Journal of Psychophysiology, 71, 70–74. http://doi.org/10.1016/j.ijpsycho.2008.07.021
[5] Debener, S., Beauducel, A., Nessler, D., Brocke, B., Heilemann, H., & Kayser, J. (2000), Is resting anterior EEG alpha asymmetry a trait marker for depression? Findings for healthy adults and clinically depressed patients. Neuropsychobiology, 41(1), 31–37. http://doi.org/10.1159/000026630
[6] Knott, V., Mahoney, C., Kennedy, S., & Evans, K. (2001), EEG power, frequency, asymmetry and coherence in male depression. Psychiatry Research - Neuroimaging, 106(2), 123–140. http://doi.org/10.1016/S0925-4927(00)00080-9
[7] Korb, A. S., Cook, I. A., Hunter, A. M., & Leuchter, A. F. (2008), Brain electrical source differences between depressed subjects and healthy controls. Brain Topography, 21(2), 138–146. http://doi.org/10.1007/s10548-008-0070-5
[8] Jarworska, N., Blier, P., Fusee, W., & Knott, V. (2012), Alpha power, alpha asymmetry and anterior cingulate cortex activity in depressed males and females. Journal of Psychiatric Research, 46, 1483–1491. http://doi.org/http://dx.doi.org/10.1016/j.jpsychires.2012.08.003
[9] Grin-Yatsenko, V. A., Baas, I., Ponomarev, V. A., & Kropotov, J. D. (2010), Independent component approach to the analysis of EEG recordings at early stages of depressive disorders. Clinical Neurophysiology, 121(3), 281–289.
[10] Ray, W. J., & Cole, H. W. (1985), EEG alpha activity reflects attentional demands, and beta activity reflects emotional and cognitive processes. American Association for the Advancement of Science, 228(4700), 750–752.
[11] Nystrom, C., Matousek, M., & Hallstrom, T. (1986), Relationships between EEG and clinical characteristics in major depressive disorder. Acta Psychiatrica Scandinavica, 73(4), 390–394. http://doi.org/10.1111/j.1600-0447.1986.tb02700.x
[12] John, E. R., Prichep, L. S., Fridman, J., & Easton, P. (1977), Neurometrics : computer-assisted differential diagnosis of brain dysfunctions. Science, 239(14), 162–169.
[13] Dierks, T., Becker, T., & Maurer, K. (1993), Brain electrical activity in depression described by equivalent dipoles. Journal of Affective Disorders, 28(2), 95–104. http://doi.org/10.1016/0165-0327(93)90038-L
[14] Matousek, M. (1991), EEG patterns in various subgroups of endogenous depression. International Journal of Psychophysiology, 10(3), 239–243. http://doi.org/10.1016/0167-8760(91)90034-U
[15] Nieber, D., & Schlegel, S. (1992), Relationships between psychomotor retardation and EEG power spectrum in major depression. Neuropsychobiology, 25, 20–23.
[16] Tarn, M., Edwards, J. G., & Sedgwick, E. M. (1993). Fluoxetine, amitriptyline and the electroencephalogram. Journal of Affective Disorders, 29, 7–10.
[17] Goldberg, T.E., David, A. and Gold, J.M. (2003), Neurocognitive deficits in schizophrenia, in schizophrenia, Second Edition (eds S. R. Hirsch and D. R. Weinberger), Blackwell Science Ltd, Oxford, UK. doi: 10.1002/9780470987353.ch10
[18] Bench, C. J., Friston, K. J., Brown, R. G., Scott, L. C., Frackowiak, R. S. J., & Dolan, R. J. (1992), The anatomy of melancholia - focal abnormalities of cerebral blood flow in major depression. Psychological Medicine, 22, 607–615.
[19] Drevets, W. C., Videen, T. O., Price, J. L., Preskorn, S. H., Carmichael, S. T., & Raichle, M. E. (1992), Anatomical study of unipolar depression. The Journal of Neuroscience, 12(9), 3628–3641.
[20] Mayberg, H. S., Lewis, P. J., Regenold, W., & Wagner Jr., H. N. (1994), Paralimbic hypoperfusion in unipolar depression. The Journal of Nuclear Medicine, 35(6), 929–935.
-
Downloads
-
How to Cite
Zi Xiang, L., & Fauzan, N. (2018). Region of Interest (ROI) for EEG Activity in Depressed Young Adult. International Journal of Engineering & Technology, 7(3.22), 10-13. https://doi.org/10.14419/ijet.v7i3.22.17113Received date: 2018-08-08
Accepted date: 2018-08-08
Published date: 2018-08-08