Nonlinear effects in WDM Networks

  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract

    This paper studies nonlinear effects in WDM Network. The focus is on both the propagation of a unique signal as well as a set of them in optical fibers in a WDM network. The paper presents an analytical model to study the effects of having nonlinearities in a WDM system. Three main nonlinear effects are studied here are Cross Phase Modulation, Self-Phase Modulation, and Four Wave Mixing. Simulations are performed on up to 265 channels WDM System.



  • Keywords

    WDM network; nonlinear effects; Four Wave Mixing; Cross Phase Modulation.

  • References

      [1] M. Fox, Optical Properties of Solids, ser. Oxford Master Series in Physics. OUP Oxford, 2010. [Online]. Available:

      [2] “Heinrich hertz’s wireless experiment (1887),” 2017. [Online]. Available:∼jones/cscie129/nu lectures/ lecture6/hertz/Hertz exp.html

      [3] J. C. Maxwell, “A dynamical theory of the electromagnetic field,” Philosophical Transactions of the Royal Society of London, vol. 155, no. 0, pp. 459–512, jan 1865. [Online]. Available:

      [4] R. Ramaswami, K. Sivarajan, and G. Sasaki, Optical Networks: A Practical Perspective, 3rd Edition. Morgan Kaufmann, 2009. [Online]. Available: 0JYN1NVW651KCA56C102&tag=techkie-20&linkCode=xm2& camp=2025&creative=165953&creativeASIN=0123740924

      [5] R. Ramaswami and K. Sivarajan, Optical Networks: A Practical Perspective (Morgan Kaufmann Series in Networking). Morgan Kaufmann, 2001. [Online]. Available: 0JYN1NVW651KCA56C102&tag=techkie-20&linkCode=xm2& camp=2025&creative=165953&creativeASIN=1558606556

      [6] G. Agrawal, Nonlinear Fiber Optics, Second Edition (Optics and Photonics). Academic Press, 1995. [Online]. Available: 0JYN1NVW651KCA56C102&tag=techkie-20&linkCode=xm2& camp=2025&creative=165953&creativeASIN=0120451425

      [7] T. B. Benjamin and J. E. Feir, “The disintegration of wave trains on deep water part 1. theory,” Journal of Fluid Mechanics, vol. 27, no. 03, p. 417, feb 1967. [Online]. Available: https: //

      [8] T. B. Benjamin and K. Hasselmann, “Instability of periodic wavetrains in nonlinear dispersive systems [and discussion],” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 299, no. 1456, pp. 59–76, jun 1967. [Online]. Available:

      [9] S. Obayya, Computational Photonics. Imprint unknown, 2011. [Online]. Available: 0JYN1NVW651KCA56C102&tag=techkie-20&linkCode=xm2& camp=2025&creative=165953&creativeASIN=1119957508

      [10] L. R. D. Sam-Shajing Sun, Introduction to Organic Electronic and Optoelectronic Materials and Devices (Optical Science and Engineering). CRC Press, 2008. [Online]. Available: 0JYN1NVW651KCA56C102&tag=techkie-20&linkCode=xm2& camp=2025&creative=165953&creativeASIN=0849392845

      [11] C. Li, Nonlinear Optics: Principles and Applications. Springer, aug 2016. [Online]. Available:

      [12] P. R. Shevgaonkar. (2012, jan) Introduction to non-linear fiber optics. [Online]. Available:

      [13] S. Dhara, F. Araoka, M. Lee, K. V. Le, L. Guo, B. K. Sadashiva, K. Song, K. Ishikawa, and H. Takezoe, “Kerr constant and third-order nonlinear optic susceptibility measurements in a liquid crystal composed of bent-shaped molecules,” Physical Review E, vol. 78, no. 5, nov 2008. [Online]. Available:

      [14] D. B. Potter. (2010, aug) Module 3 - attenuation in optical fibers. [Online]. Available: Module3%20Optical%20Attenuation.pdf

      [15] R. W. Boyd. (2008) Nonlinear optics, third edition. [Online]. Available: tag=techkie-20&linkCode=xm2&camp=2025&creative=165953& creativeASIN=0123694701

      [16] S. A. Rashkovskiy. (2018, feb) Nonlinear schrodinger equation and ¨ classical-field description of the lamb retherford experiment. [Online]. Available:

      [17] D. Felice, “A study of a nonlinear schrodinger equation for optical ¨ fibers,” Ph.D. dissertation, Facolta di Scienze Matematiche, Fisiche e ` Naturali, 2016.

      [18] F. C. F. O. F. S. Co.). (2016, nov) Optical fiber dispersion. [Online]. Available:

      [19] J. D. Downie, J. Hurley, and X. Zhu, “Xpm and sbs nonlinear effects on mlse with varying uncompensated dispersion,” Opt. Express, vol. 17, no. 24, pp. 22 240–22 245, Nov 2009. [Online]. Available:

      [20] M. Takahashi, R. Sugizaki, J. Hiroishi, M. Tadakuma, Y. Taniguchi, and T. Yagi, “Low-loss and low-dispersion-slope highly nonlinear fibers,” J. Lightwave Technol., vol. 23, no. 11, p. 3615, Nov 2005. [Online]. Available:

      [21] A. D’Ottavi, F. Girardin, L. Graziani, F. Martelli, P. Spano, A. Mecozzi, S. Scotti, R. Dall’Ara, J. Eckner, and G. Guekos, “Four-wave mixing in semiconductor optical amplifiers: a practical tool for wavelength conversion,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 3, no. 2, pp. 522–528, Apr 1997.

      [22] T. N. H. D. V. Aravind P. Anthur, Regan T. Watts and L. P. Barry. (2013, aug) A general phase noise relationship for four-wave mixing. [Online]. Available:

      [23] S. K. O. R. I. L. Y. N. I. Motoki Asano, Yuki Takeuchi and T. Yamamoto. (2016, may) Stimulated brillouin scattering and brillouin-coupled four-wave-mixing in a silica microbottle resonator. [Online]. Available:




Article ID: 17327
DOI: 10.14419/ijet.v7i3.13.17327

Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.