Development of Conductive Nanocomposite for Sensing Application

  • Authors

    • Brijesh Prasad
    • Varij Panwar
    • Mayank Chaturvedi
    • Vikash Rathi
    • F S. Gill
    • Kapil Sharma
    • Pravin P.Patil
    • . .
    2018-07-20
    https://doi.org/10.14419/ijet.v7i3.12.17625
  • conductive membrane, dielectric medium, conductive fillers, flexible conductive film
  • Carbonaceous compounds being conductive in nature have proved themselves as the best conductive network assembly material with Poly (vinylidene fluoride) (PVDF) polymer matrix which forms dielectric medium. Carbon based compounds are conductive in nature and are being used  to form conductive channels for the flow of charge for the application of health as soft electronic devices and smart flexible conducting thin films in the form of sensors and actuators. Carbon nano fibers (CNF) play role of conductive filler to form conductive networks for the flow of charge in the polymer matrix. The interesting thing about CNF is its tailorable concentration. It influences the mechanical and electrical properties with different weight percent. In the present study solvent casting technique is used for the development of composite membrane, which is easy to fabricate and less costly. An increase in CNF content leads to deterioration of young’s modulus in comparison with pure PVDF, while with the infiltration of CNF in different quantities increases toughness and overall mechanical strength of the polymer composite of PVDF-CNF. CNF helped in increasing the electrical conductivity of the samples by entrapping in between the matrix and helping in bridge formation for the charge flow. The obtained conductive membrane showed low resistance, good electrical properties and high conductivity. The conductive film can be utilized as a conductive medium as it was able to glow the LED bulb at very low voltage of 2 V with drop of 1.8 V.

     

     

  • References

    1. [1] Zulfli, N. M., Bakar, A. A., & Chow, W. S. (2013). Mechanical and water absorption behaviors of carbon nanotube reinforced epoxy/glass fiber laminates. Journal of Reinforced Plastics and Composites, 32(22), 1715-1721.

      [2] Zhai, T., Lu, X., Wang, F., Xia, H., & Tong, Y. (2016). MnO 2 nanomaterials for flexible supercapacitors: performance enhancement via intrinsic and extrinsic modification. Nanoscale Horizons, 1(2), 109-124.

      [3] Li, N., Yang, G., Sun, Y., Song, H., Cui, H., Yang, G., & Wang, C. (2015). Free-standing and transparent graphene membrane of polyhedron box-shaped basic building units directly grown using a nacl template for flexible transparent and stretchable solid-state supercapacitors. Nano letters, 15(5), 3195-3203.

      [4] Eswaraiah, V., Balasubramaniam, K., & Ramaprabhu, S. (2011). Functionalized graphene reinforced thermoplastic nanocomposites as strain sensors in structural health monitoring. Journal of Materials Chemistry, 21(34), 12626-12628.

      [5] Jiménez, P., Maser, W. K., Castell, P., Martínez, M. T., & Benito, A. M. (2009). Nanofibrilar polyaniline: Direct route to carbon nanotube water dispersions of high concentration. Macromolecular rapid communications, 30(6), 418-422.

      [6] Spain, Ian L. "The electronic properties of graphite." Chemistry and Physics of Carbon 8 (1973): 87-94.

      [7] Mikhaylova, A. A., Tusseeva, E. K., Mayorova, N. A., Rychagov, A. Y., Volfkovich, Y. M., Krestinin, A. V., & Khazova, O. A. (2011). Single-walled carbon nanotubes and their composites with polyaniline. Structure, catalytic and capacitive properties as applied to fuel cells and supercapacitors. Electrochimica Acta, 56(10), 3656-3665.

      [8] Zhou, Y., Qin, Z. Y., Li, L., Zhang, Y., Wei, Y. L., Wang, L. F., & Zhu, M. F. (2010). Polyaniline/multi-walled carbon nanotube composites with core–shell structures as supercapacitor electrode materials. Electrochimica Acta, 55(12), 3904-3908.

      [9] Li, L., Qin, Z. Y., Liang, X., Fan, Q. Q., Lu, Y. Q., Wu, W. H., & Zhu, M. F. (2009). Facile fabrication of uniform core− shell structured carbon nanotube− polyaniline nanocomposites. The Journal of Physical Chemistry C, 113(14), 5502-5507.

      [10] Ginic-Markovic, M., Matisons, J. G., Cervini, R., Simon, G. P., & Fredericks, P. M. (2006). Synthesis of new polyaniline/nanotube composites using ultrasonically initiated emulsion polymerization. Chemistry of Materials, 18(26), 6258-6265.

      [11] Jiménez, P., Maser, W. K., Castell, P., Martínez, M. T., & Benito, A. M. (2009). Nanofibrilar polyaniline: Direct route to carbon nanotube water dispersions of high concentration. Macromolecular rapid communications, 30(6), 418-422.

      [12] Gao, B., Fu, Q., Su, L., Yuan, C., & Zhang, X. (2010). Preparation and electrochemical properties of polyaniline doped with benzenesulfonic functionalized multi-walled carbon nanotubes. Electrochimica Acta, 55(7), 2311-2318.

      [13] Jiménez, P., Castell, P., Sainz, R., Ansón, A., MartiÌnez, M. T., Benito, A. M., & Maser, W. K. (2010). Carbon nanotube effect on polyaniline morphology in water dispersible composites. The Journal of Physical Chemistry B, 114(4), 1579-1585.

      [14] Kudo, H., Sawada, T., Kazawa, E., Yoshida, H., Iwasaki, Y., & Mitsubayashi, K. (2006). A flexible and wearable glucose sensor based on functional polymers with Soft-MEMS techniques. Biosensors and Bioelectronics, 22(4), 558-562.

      [15] Fidelus, J. D., Wiesel, E., Gojny, F. H., Schulte, K., & Wagner, H. D. (2005). Thermo-mechanical properties of randomly oriented carbon/epoxy nanocomposites. Composites Part A: Applied Science and Manufacturing, 36(11), 1555-1561.

      [16] Wang, P., Geng, S., & Ding, T. (2010). Effects of carboxyl radical on electrical resistance of multi-walled carbon nanotube filled silicone rubber composite under pressure. Composites Science and Technology, 70(10), 1571-1573.

      [17] Costa, P., Silva, J., Sencadas, V., Costa, C. M., Van Hattum, F. W. J., Rocha, J. G., & Lanceros-Méndez, S. (2009). The effect of fibre concentration on the α to β-phase transformation, degree of crystallinity and electrical properties of vapour grown carbon nanofibre/poly (vinylidene fluoride) composites. Carbon, 47(11), 2590-2599.

      [18] Pang, H., Xu, L., Yan, D. X., & Li, Z. M. (2014). Conductive polymer composites with segregated structures. Progress in Polymer Science, 39(11), 1908-1933.

      [19] Spitalsky, Z., Tasis, D., Papagelis, K., & Galiotis, C. (2010). Carbon nanotube–polymer composites: chemistry, processing, mechanical and electrical properties. Progress in polymer science, 35(3), 357-401.

      [20] Ra, E. J., An, K. H., Kim, K. K., Jeong, S. Y., & Lee, Y. H. (2005). Anisotropic electrical conductivity of MWCNT/PAN nanofiber paper. Chemical Physics Letters, 413(1-3), 188-193

      [21] Nigro, B., Grimaldi, C., Miller, M. A., Ryser, P., & Schilling, T. (2012). Tunneling conductivity in composites of attractive colloids. The Journal of chemical physics, 136(16), 164903.

      [22] Georgousis, G., Pandis, C., Kalamiotis, A., Georgiopoulos, P., Kyritsis, A., Kontou, E., ... & Omastova, M. (2015). Strain sensing in polymer/carbon nanotube composites by electrical resistance measurement. Composites Part B: Engineering, 68, 162-169.

      [23] Zhu, H., Wang, X., Liang, J., Lv, H., Tong, H., Ma, L., ... & Liu, Z. (2017). Versatile Electronic Skins for Motion Detection of Joints Enabled by Aligned Fewâ€Walled Carbon Nanotubes in Flexible Polymer Composites. Advanced Functional Materials, 27(21).

      [24] Gonçalves, B. F., Costa, P., Oliveira, J., Ribeiro, S., Correia, V., Botelho, G., & Lancerosâ€Mendez, S. (2016). Green solvent approach for printable large deformation thermoplastic elastomer based piezoresistive sensors and their suitability for biomedical applications. Journal of Polymer Science Part B: Polymer Physics, 54(20), 2092-2103.

      [25] Spitalsky, Z., Tasis, D., Papagelis, K., & Galiotis, C. (2010). Carbon nanotube–polymer composites: chemistry, processing, mechanical and electrical properties. Progress in polymer science, 35(3), 357-401.

      [26] Eswaraiah, V., Balasubramaniam, K., & Ramaprabhu, S. (2011). Functionalized graphene reinforced thermoplastic nanocomposites as strain sensors in structural health monitoring. Journal of Materials Chemistry, 21(34), 12626-12628.

  • Downloads

  • How to Cite

    Prasad, B., Panwar, V., Chaturvedi, M., Rathi, V., S. Gill, F., Sharma, K., P.Patil, P., & ., . (2018). Development of Conductive Nanocomposite for Sensing Application. International Journal of Engineering & Technology, 7(3.12), 1025-1029. https://doi.org/10.14419/ijet.v7i3.12.17625