Indexing Based Feature Selection by Applying Ant Colony Optimization Method for Improving Web Page Classification

  • Authors

    • A M. James Raj
    • F Sagayaraj Francis
    2018-08-15
    https://doi.org/10.14419/ijet.v7i3.27.17882
  • Ant colony optimization, firefly algorithm, particle swarm optimization, cuckoo search algorithm, bat algorithms, wolf search and genetic algorithms or programming.
  • Abstract

    In this information age many research work are carried out in web page classification to acquire the relevant and appropriate information. To be more specific, for enhancing the web page classification to obtain the optimized feature sets are chosen by utilizing the evolutionary algorithms.  Normally, these algorithms are designed by the heuristic principles stimulated by natural evolution. After analyzing the significance of the various evolutionary algorithms deployed by several researchers in this domain so far, this work also intended to apply them to acquire the best solutions (enhanced features). In general, applying the evolutionary algorithms the fittest genes are generated and determined by the fitness function. Once the fittest genes are decided picking up the fittest individual genomes from a population for taking them to the next generations is the challenging task. In this article a novel approach is proposed to choose the best solutions.

     

     

  • References

    1. [1] Chitra P & Venkatesh P, “Multiobjective evolutionary computation algorithms for solving task scheduling problem on heterogeneous systemsâ€, International journal of knowledge-based and intelligent engineering systems, Vol.14, No.1,(2010), pp.21-30.

      [2] Yang XS & He X, “Firefly algorithm: recent advances and applicationsâ€, International Journal of Swarm Intelligence, Vol.1, No.1,(2013), pp.36-50.

      [3] Zhang Q & Richard S, “Web Mining: A Survey of Current Research, Techniques and Softwareâ€, International Journal of Information Technology & Decision Making, (2008), pp.683–720.

      [4] Wu S & Li Y, “Pattern-Based Web Mining Using Data Mining Techniquesâ€, International Journal of e-Education, e-Business, e-Management and e-Learning, (2013), pp.163-167.

      [5] Li Y, Chen XZ & Yang BR, “Research on web mining-based intelligent search engineâ€, International Conference on Machine Learning and Cybernetics, (2002), pp.386-390.

      [6] Hendtlass T, “Particle Swarm Optimization and high dimensional problem spacesâ€, IEEE Congress on Evolutionary Computation, (2009), pp.1988-1994.

      [7] Yang XS & Deb S, “Cuckoo Search via Levy flightsâ€, World Congress on Nature and Biologically Inspired Computing, (2015), pp.61-68.

      [8] San PE, “Classification of Web Pages using TF-IDF and Ant Colony Optimizationâ€, International Journal of Scientific Engineering & Technology Research, (2014), pp.61-68.

      [9] Kim C & Shim K, “Text: Automatic template extraction from heterogeneous web pagesâ€, IEEE Transactions on knowledge and data Engineering, Vol.23, No.4,(2011), pp.612-626.

      [10] Xue B, Zhang M & Brown WN, “Particle Swarm Optimization for Feature Selection in Classification: A multi-objective approachâ€, IEEE Transactions on Cybernets, (2013), pp.1656-1671.

      [11] A Mukanbetkaliyev, S Amandykova, Y Zhambayev, Z Duskaziyeva, A Alimbetova (2018). The aspects of legal regulation on staffing of procuratorial authorities of the Russian Federation and the Republic of Kazakhstan Opción, Año 33. 187-216.

      [12] G Cely Galindo (2017) Del Prometeo griego al de la era-biós de la tecnociencia. Reflexiones bioéticas Opción, Año 33, No. 82 (2017):114-133

  • Downloads

  • How to Cite

    M. James Raj, A., & Sagayaraj Francis, F. (2018). Indexing Based Feature Selection by Applying Ant Colony Optimization Method for Improving Web Page Classification. International Journal of Engineering & Technology, 7(3.27), 227-232. https://doi.org/10.14419/ijet.v7i3.27.17882

    Received date: 2018-08-19

    Accepted date: 2018-08-19

    Published date: 2018-08-15