Fixed Point Theorems Under New Caristi Type Contraction in Bipolar Metric Space with Applications

  • Authors

    • B Srinuvasa Rao
    • G N.V.Kishore
    • S Ramalingeswara Rao
    2018-08-24
    https://doi.org/10.14419/ijet.v7i3.31.18276
  • Bipolar metric space, covariant map, fixed point, lower semi continuous function, new caristi type contraction.
  • Abstract

    In this paper, the existence of fixed-point results in a complete bipolar metric spaces under new caristi type contraction is well established. Some attention gaining consequences are attained through our results. Finally, it presented an illustration which present applicability of the obtained results.

     

  • References

    1. [1] Ali Mutlu, Utku Gürdal., Bipolar metric spaces and some fixed point theorems, J. Nonlinear Sci. Appl. 9(9), 2016, 5362-5373.

      [2] Ali Mutlu, Kübra Özkan, Utku Gürdal., Coupled fixed point
      theorems on bipolar metric spaces
      , European journal of pure and applied mathematics. Vol. 10, No. 4, 2017, 655-667.

      [3] J. Caristi, Fixed point Theorems for mappings satisfying inwardness condition, Trans. Amer. Math. Soc.215 (1976), 241-251. http://dx.doi.org/10.1090/s0002-9947-1976-0394329-4.

      [4] Banach S., Sur les operations dans les ensembles abstraits
      etleur applications aux equations integrals
      , Fund. Math.3. 133-181(1922).

      [5] Farshid Khojasteh, et. al., Some applications of Caristis´ fixed
      point theorem in metric spaces
      . Fixed point theory and Applications (2016), 2016:16.

      [6] I. Ekeland., On the variational principle, J. Math. Anal. Appl.
      47(2), 324-353 (1974).

      [7] I. Ekeland., Sur les problems variationnels, C. R. Acad. Sci.
      Paris, 275(1972), 1057-1059. 1.

      [8] Lazaiz, Samih; Chaira, Karim; Aamri, Mohamed; Marhrani,
      EL Miloudi; Related point theorems of caristi type for two setvalued mappings, Bulletin of Mathematical Analysis and Applications. 2017, Vol. 9 Issue 1, p123-133. 11p.

      [9] M. A. Khamsi, W. A. Kirk, An Introduction to metric spaces
      and fixed point theory
      , Wiley-Inter science, New York, (2001), http://dx.doi.org/10.1002/9781118033074.

      [10] MA. Khamsi, Remarks on Caristis´ fixed point theorem, Nonlinear Anal. TMA 71, 227-231(2009).

      [11] M. R. Alfuraidan; Remarks on Caristis fixed point theorem in
      metric spaces with a graph
      , Fixed Point Theory and Applications, vol. 2014, no. 1, article no. 240, 2014.

      [12] RP. Agarwal, MA. Khamsi, Extension of Caristi’s fixed point
      theorem to vector valued metric space
      , Nonlinear Anal. TMA
      74, 141-145(2011) doi: 10.1016/ j. na.2010.08.025.

      [13] Tomonari Suzuki; Characterization of -Semi completeness via
      Caristis Fixed Point Theorem in Semi metric Spaces
      , Hindawi
      Journal of Function Spaces. Volume 2018, Article ID 9435470,
      7 pages, https://doi.org/10.1155/2018/9435470

  • Downloads

  • How to Cite

    Srinuvasa Rao, B., N.V.Kishore, G., & Ramalingeswara Rao, S. (2018). Fixed Point Theorems Under New Caristi Type Contraction in Bipolar Metric Space with Applications. International Journal of Engineering & Technology, 7(3.31), 106-110. https://doi.org/10.14419/ijet.v7i3.31.18276

    Received date: 2018-08-25

    Accepted date: 2018-08-25

    Published date: 2018-08-24