Controllability, Observability and Stability of Volterra Type Non-Linear Matrix Integro-Dynamic System on Time Scales
-
2018-08-24 https://doi.org/10.14419/ijet.v7i3.31.18278 -
Controllability, non-linear Volterra type matrix integro-dynamic system, observability, stability, time scales. -
Abstract
This paper investigates the controllability, observability and stability of the solution of Volterra type non linear matrix integro dynamic system on time scales.
Â
Â
-
References
[1] M. Adivar, “Principal matrix solution and variation of
parameters for Volterra integro-dynamic equations on time
scalesâ€, Glasg. Math. J, Vol.53, (2011), pp.463-480.
[2] L.C. Becker, “Principal matrix solutions and variation of parameters for a for Volterra-integro-differential equation and
its adjointâ€, Electron J Qual Theory Differ Equ, Vol.14,
(2006), pp.1-22.
[3] M. Bohner, A. Peterson, Dynamic Equations on Time Scales,
Birkhauser, Boston, (2001).
[4] T.A. Burton, W.E. Mahfound, “Stability criteria for Volterra
equationsâ€,Trans Am Math Soc Vol.279, (1983), pp.143-174.
[5] T.A. Burton, W.E. Mahfound, “Stability by decompositions
for Volterra equationsâ€, Tohoku Math J JI Ser Vol.37, (1985),
pp.489-511.
[6] T.A. Burton, Volterra integral and differential equations, 2nd
edn. Elsevier, (2005).
[7] J.M. Davis, I.A. Gravagne, B.J.Jackson, R.J. Marks,
“Controllability, observability, realizability, and stability of
dynamic linear systemsâ€, Electron J Differ Equ Vol.37,
(2009), pp.1-32.
[8] S. Hilger, Ein Mabkettenkalkul mit Anwendung auf
Zentrumsmannigfaltigkeiten, PhD thesis, Universitat
Wurzburg, (1988).
[9] IA. Gravagne, JM. Devis and JJ. Dacunha, “A unified
approach to high-gain adaptive controllersâ€, J.Abstr Appl
Anal, (2009).
[10] IA. Gravagne, JM. Devis and JJ. Dacunha, RJ II. Marks,
“Bandwidth reduction for controller area networks using
adaptive samplingâ€, New Orleans, (2004), pp.5250-5255.
[11] IA. Gravagne, JM. Devis and RJ II. Marks, “How
deterministic must a real time controllerâ€,Alberta, (2005),
pp.3856-3861.
[12] R.E. Kalman, “On the general theory of control
systemâ€,Proc.1st IFAC Congress Automatic control Vol.1,
(1960), pp.481-492.
[13] R.E. Kalman, Y.C. Ho, K.S. Narendra, “Controllability of
linear dynamical systemsâ€,Contrib. Differ. Equ Vol.1,
(1963), pp.189-213.
[14] RJ II. Marks, IA. Gravagne, JM. Devis and JJ. Dacunha,
“Nonregressivity in switching linear circuits and mechanical
systemsâ€,Math Comput Model Vol.43, (2006), p.1383-1392.
[15] J. Seiffert, S. Sanyal, DC. Wunsch,“Hamilton –Jacobi
-Bellman equations and approximate dynamic programming
- on time scalesâ€,IEEE Trans Syst Man Cybern Vol.38, (2008),
pp.918-923.
[16] A. Yonus, Ghaus ur Rahman, “Controllability, Observability,
and Stability of a Volterra integro-dynamic system on time
scalesâ€,IEEE Trans Syst Man Cybern Vol.20, (2014),
pp.383-402.
-
Downloads
-
How to Cite
V. Ramana, G., & V. S. R. Deekshitulu, G. (2018). Controllability, Observability and Stability of Volterra Type Non-Linear Matrix Integro-Dynamic System on Time Scales. International Journal of Engineering & Technology, 7(3.31), 115-120. https://doi.org/10.14419/ijet.v7i3.31.18278Received date: 2018-08-25
Accepted date: 2018-08-25
Published date: 2018-08-24