Steady Natural Convection Heat and Mass Transfer Due to a Horizontal Line Source in the Presence Of Magnetic Field and Chemical Reaction

  • Authors

    • Venkat Rao Kanuri
    • Sridevi Dandu
    • Santhi Gottumukkala
    • Nagubabeswara Rao Cheemalapati
    2018-08-24
    https://doi.org/10.14419/ijet.v7i3.31.18292
  • Plume flow, Adiabatic plate, Natural convection, Double diffusion, Plate temperature variation.
  • Natural convective heat and mass transfer due to a horizontal line source at an adiabatic plate and plane plume flow are analyzed in the presence of magnetic field and chemical reaction. The case of an isothermal plate and a plate of varying temperature are also discussed. Certain qualitatively distinct behaviours of the transport parameters noticed are - for an adiabatic plate as well as an isothermal plate, the transport parameters have exhibited asymptotic behaviour with the Prandtl number and Schmidt number. For Plume flow centre line velocity has exhibited asymptotic behaviour with Prandtl number and Schmidt number. Transport parameters diminished but centre line velocity of the Plume increased with increasing magnetic field. Chemical reaction is seen to increase centre line velocity/Sherwood number and diminish skin friction/Nusselt number. Comparison of the results at an adiabatic plate with those at an isothermal plate and a plate of varying temperature is made.     

     

     

  • References

    1. [1] D.B.Spalding and R.G.Cruddace, Theory of the steady laminar buoyant flow above a line heat source in a fluid of large Prandtl number and temperature dependent vis- cosity, Int.J.HeatMassTransfer,3,(1961),55-59 doi: 10.1016/0017-9310(61)90005-9.

      [2] T.Fujji. Natural convection above a horizontal line heat source and a point heat source. Reports of the research institute of Science and Industry, No.33 (1962). (In Japanese)

      [3] T.Fujii, Theory of the steady laminar natural convection above a horizontal line source and a point heat source, Int. J.Heat Mass Transfer 6, (1963), 597. doi:10.1016/0017-9310(63)90015-2

      [4] B.Gebhart, L.Pera and A.W.Schorr, Steady Laminar natu ral convection plumes above a horizontal line heat source, Int. J.Heat Mass Transfer 13, (1970), 161-168. doi:10.1016/0017-9310(70)90032-3

      [5] Zimin,V.D. and Lyakhov. Yu.N. Convective wall plume, Translated from Zhurnal Prikladnoi Mekhaniki Tekhni Cheskoi Fiziki, J Appl Mech Tech Phys, Vol.11, No.3, May-June (1970), pp.511-513. doi:10.1007/BF00908091

      [6] Liburdy,J.A. and Faeth,G.M. Theory of a steady laminar thermal Plume along a vertical adiabatic wall, Letters in heat and mass transfer, Vol.2, (1975), pp. 407 – 418. doi: 10.1016/0094-4548(75)90007-7

      [7] Yogesh Jaluria and Gebhart, B. Buoyancy-induced flow arising from a line thermal source on an adiabatic vertical surface. Int.J.Heat Mass Transfer, Vol.20,(1977), pp.153- 157. https://doi.org/10.1016/0017-9310(77)90007-2

      [8] Gray, Donald D. The laminar wall plume in a transverse magnetic field. Int. J. Heat Mass Transfer, Vol.22, (1979) pp.1155-1158. https://doi.org/10.1016/0017- 9310(79)90190-X

      [9] Rao,K.V., Armaly, B.F. and Chen,T.S. Analysis of lami- nar mixed convective plumes along vertical adiabatic sur faces, Journal of Heat Transfer, Trans. ASME. Vol.106, August (1984), pp.552-557. doi:10.1115/1.3246714

      [10] E.V.Somers, Theoretical considerations of combined thermal and mass transfer from a vertical flat plate, J. Appl. Mech.23,(1956), 295-301.

      [11] W.G.Mathers, A.J.Madden and E.L.Piret, Simultaneous Heat and mass transfer in free convection, Ind. Eng. Chem., 49, (1957), 961-968. doi:10.1021/ie50570a025

      [12] W.R.Wilcox, Simultaneous heat and mass transfer in free convection, Chem. Engng.Sci.13, (1961), 113-119.

      [13] Gebhart and L.Pera, The Nature of vertical natural convection flows resulting from the combined buoyancy effects of thermal and mass diffusion, Int.J.HeatMassTransfer14,(1971), 2025-2050. https://doi.org/10.1016/0017- 9310(71)90026-3

      [14] Hernandez, R.H. Natural convection in thermal plumes emerging from a single heat source, Int. J. thermal sciences, Vol.98,(2015), pp.81-89. https://doi.org/10.1016/j.ijthermalsci.2015.06.010

      [15] Jiin-Yuh Jang and Chuan-Tzershiang. The mixed convection plume along a vertical adiabatic surface embedded in a non- darcian porous medium. Int. J.Heat Mass Transfer. Vol.40, No.7, (1997), pp.1693-1699. https://doi.org/10.1016/S0017- 9310(96)00199-8

      [16] Kirdyashkin. A.A., Dobretsov.N.L. and Kirdyashkin.A.G. Heat and Mass Transfer in a thermo chemical plume under a Oceanic plate far from the mid-Ocean Ridge axis. Izvestiya, Physics of the solid earth, Vol.44, No.6, (2008) ,pp.456-468. doi:10.1134/S1069351308060025.

      [17] Moses.E, Zocchi.G, Procaccia.I and Libchaber.A. The Dynamics and Interaction of laminar Thermal Plumes. Euro Physics letters, Vol.14, No.1 , (1991), pp.55-60. https://doi.org/10.1209/0295-5075/14/1/010

      [18] Ioan Pop, Jinkook L.E.E. and Rama Subba Reddy, Gorla. Convective wall plume in power-law fluids, Int. J. Heat Mass Transfer, Vol.36, No.3,(1993), pp.593-597. https://doi.org/10.1016/0017-9310(93)80034-R

      [19] Quareni.F, Yuen.D.A. and Eby. H.E. Free convective boundary layers in variable-viscosity fluids by the me- thod of local non-similarity: Application to plumes in the earth’s mantle. IL Nuovo Cimento C, Vol.6, No.5, Set- tember - Ottober (1983) pp. 473-504. https://doi.org/10.1007/BF02561448

      [20] Van P.Carey and Joseph C.Mollendorf, Variable viscosi- ty effects in several Natural convection flows, Int. J. Heat Mass Transfer, Vol.23(1980), pp.95-109. https://doi.org/10.1016/0017-9310(80)90142-8

      [21] Nachtsheim, P.R., & Swigert, P., Satisfaction of Asymp- totic boundary conditions in numerical solution of sys tems of non linear equations of boundary-layer type, NASA TN D-3004(1965).

  • Downloads

  • How to Cite

    Rao Kanuri, V., Dandu, S., Gottumukkala, S., & Rao Cheemalapati, N. (2018). Steady Natural Convection Heat and Mass Transfer Due to a Horizontal Line Source in the Presence Of Magnetic Field and Chemical Reaction. International Journal of Engineering & Technology, 7(3.31), 168-173. https://doi.org/10.14419/ijet.v7i3.31.18292