Asymptotic Stability of Solution of Lyapunov Type Matrix Volterra Integro-Dynamic System on Time Scales
-
2018-08-24 https://doi.org/10.14419/ijet.v7i3.31.18294 -
Asymptotic stability, Lyapunov, integro systems, time scales. -
Abstract
Â
This article emphasizes the characteristics and nature of  asymptotic stability of solution of Lyapunov type matrix Volterra integro-dynamic system on time scales.
Â
-
References
[1] M. Bohner, A. Peterson, Dynamic Equations on Time Scales, Birkhauser, Boston, (2001).
[2] T.A. Burton, “Stability theory for Volterra equationsâ€, J. Diff Equs, Vol.32, (1979), pp.101-118.
[3] T.A. Burton, “Integro differential equationsâ€, Proc. Amer.
Math. Soc Vol.79, (1980), pp.393-399.
[4] S.I. Grossman, R. K. Miller, “Perturbation theory for Volterra integro-differential systemâ€, J. diff. Equs Vol.8, (1970),
pp.451-474.
[5] S. Hilger, Ein Mabkettenkalkul mit Anwendung auf
Zentrumsmannigfaltigkeiten, PhD thesis, Universitat
Wurzburg, (1988).
[6] B. Karpuz, Basics of volterra integral equations on time scales,
(2011).
[7] T. Kulik, C.C. Tisdell, “Volterra integral equations on time
scalesâ€, Int. J. Difference Equ, Vol.3, (2008) pp.103-133.
[8] V. Lupulescu, K. Ntouyas, and A.Younus, “Qualitative
aspects of a Volterra integro-dynamic system on time
scalesâ€, Electronic Journal of Qualitative Theory of
Differential Equations, Vol.5, (2013), pp.1-35.
[9] V. Volterra, Theory of functionals and integral and
integro-differential equations, Dover, New York, (1950).
-
Downloads
-
How to Cite
V. Ramana, G., V. S. R. Deekshitulu, G., & ., . (2018). Asymptotic Stability of Solution of Lyapunov Type Matrix Volterra Integro-Dynamic System on Time Scales. International Journal of Engineering & Technology, 7(3.31), 179-185. https://doi.org/10.14419/ijet.v7i3.31.18294Received date: 2018-08-26
Accepted date: 2018-08-26
Published date: 2018-08-24