Texture Classification based on First Order Circular and Elliptical Ternary Direction Pattern Matrix

 
 
 
  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract


    Local binary pattern (LBP) captures isotropic structural information and completely fails in representing anisotropic information, however the horizontal elliptical LBP (H-ELBP) and vertical elliptical LBP (V-ELBP) represents partial anisotropic information only. In our earlier work we have derived “circular and elliptical-LBP (CE-LBP)” captures both isotropic and anisotropic structural information with a feature vector size equivalent to LBP and it is easy to implement and invariant to monotonic illumination changes. The LBP, local ternary pattern (LTP), CE-LBP and most of the extensions of LBP descriptor basically ignore the directional information. To address this and to capture both isotropic and anisotropic directional information, this paper proposes a “circular and elliptical ternary direction pattern matrix (CE-TDPM)”. The CE-TDPM encodes the relationship between the central pixel and two of its neighboring pixel located in different angles (α, β) with different directions. The CE-TDPM evaluated the possible direction variation pattern for central pixel by measuring the first order derivate relationship among the horizontal and vertical neighbors (0o vs. 90o; 90o vs. 180o; 180o vs. 270o; 270o vs. 0o) and derived a unique code. The performance of the proposed method is compared with various other existing methods using the benchmark texture databases viz. Brodtaz, UIUC, Outex and MIT-VisTex. The performance analysis shows the efficiency of the proposed method over the existing methods.

     

     


  • Keywords


    Isotropic; Anisotropic; Derivative; Ternary pattern

  • References


      [1] M. Haas, J. Rijsdam, B. Thomee, and M. S. Lew, “Relevance feedback: Perceptual learning and retrieval in bio-computing, photos, and video”, in Proc. 6th ACM SIGMM Int. Workshop Multimedia Inf. Retrieval, 2004, pp. 151–156.

      [2] X.-Y.Wang, B.-B. Zhang, and H.-Y. Yang, “Content-based image retrieval by integrating color and texture features”, Multimedia Tools Appl., vol. 68, no. 3, pp. 545–569, 2014

      [3] G. Zhao, M. Barnard, and M. Pietikainen, “Lipreading with local spatiotemporal descriptors”, IEEE Trans.Multimedia, vol. 11, no. 7, pp. 1254– 1265, Nov. 2009.

      [4] Y. D. Chun, N. C. Kim, and I. H. Jang, “Content-based image retrieval Using multiresolution color and texture features”, IEEE Trans.Multimedia, vol. 10, no. 6, pp. 1073–1084, Oct. 2008.

      [5] J. Ren, X. Jiang, J. Yuan, and N. Magnenat-Thalmann, “Sound-event classification using robust texture features for robot hearing”, IEEE Trans. Multimedia, vol. 19, no. 3, pp. 447–458, Mar. 2017

      [6] X. Liu and D.Wang, “Image and texture segmentation using local spectral histograms”, IEEE Trans. Image Process., vol. 15, no. 10, pp. 3066–3077,Oct. 2006.

      [7] X. Wang, C. Zhang, and Z. Zhang, “Boosted multi-task learning for face verification with applications to web image and video search”, in Proc. IEEE Conf. Comput. Vision Pattern Recognit., 2009, pp. 142–149.

      [8] T. Ojala, M. Pietik¨ainen, and T. M¨aenp¨a¨a, “Multiresolution gray-scale and rotation invariant texture classification with local binary patterns”, IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 7, pp. 971–987, Jul. 2002.

      [9] T. Song, H. Li, F. Meng, Q. Wu, and B. Luo, “Exploring space-frequency co-occurrences via local quantized patterns for texture representation”, Pattern Recogit., vol. 48, no. 8, pp. 2621–2632, 2015.

      [10] Y. Dong, J. Feng, L. Liang, L. Zheng, and Q. Wu, “Multiscale samplingbased texture image classification”, IEEE Signal Process. Lett., vol. 24,no. 5, pp. 614–618, May 2017.

      [11] T. Song and H. Li, “WaveLBP based hierarchical features for image classification”, Pattern Recognit. Lett., vol. 34, no. 12, pp. 1323–1328, 2013.

      [12] D. T. Nguyen, Z. Zong, P. Ogunbona, and W. Li, “Object detection using non-redundant local binary patterns”, in Pro. 17th Int. Conf. Image Process., Sep. 2010, pp. 4609–4612.

      1. Satpathy, X. Jiang, andH. L. Eng, “LBP-based edge-texture features for object recognition”, IEEE Trans. Image Process., vol. 23, no. 5, pp. 1953– 1964, May 2014.

      [13] M. Heikkil¨a, M. Pietik¨ainen, and C. Schmid, “Description of interestregions with local binary patterns”, Pattern Recognit., vol. 42, no. 3,pp. 425–436, 2009.

      [14] LiWangDong-ChenHe, “Texture classification using texture spectrum”, Pattern Recognition Volume 23, Issue 8, 1990, Pages 905-910.

      [15] T. Ojala, M. Pietik¨ainen, and D. Harwood, “A comparative study of texture measures with classification based on featured distributions”, Pattern Recognit., vol. 29, no. 1, pp. 51–59, 1996.

      [16] U.Kandaswamy, S. A. Schuckers, and D. Adjeroh, “Comparison of texture analysis schemes under nonideal conditions”, IEEE Trans. Image Process., vol. 20, no. 8, pp. 2260–2275, Aug. 2011

      [17] G. S. Xia, G. Liu, X. Bai, and L. Zhang, “Texture characterization usingshape co-occurrence patterns”, IEEE Trans. Image Process., vol. 26,no. 10, pp. 5005–5018, Oct. 2017.

      [18] F. Juefei-Xu and M. Savvides, “Subspace-based discrete transform encoded local binary patterns representations for robust periocular matching on NIST’s face recognition grand challenge”, IEEE Trans. Image Process., vol. 23, no. 8, pp. 3490–3505, Aug. 2014.

      [19] T. Song, H. Li, F. Meng, Q. Wu, and J. Cai, “LETRIST: Locally encoded transform feature histogram for rotation-invariant texture classification”, IEEE Trans. Circuits Syst. Video Technol., to be published.

      [20] O. G. Cula and K. J. Dana, “Compact representation of bidirectional texture functions”, in Proc. IEEE Conf. Comput. Vision Pattern Recognit., 2001, vol. 1, pp. I-1041–I-1047.

      [21] T. Leung and J. Malik, “Representing and recognizing the visual appearance of materials using three-dimensional textons”, Int. J. Comput. Vision, vol. 43, no. 1, pp. 29–44, 2001.

      [22] D. G. Lowe, “Distinctive image features from scale-invariant keypoints”,Int. J. Comput. Vision, vol. 60, no. 2, pp. 91–110, 2004.

      [23] N. Dalal and B. Triggs, “Histograms of oriented gradients for humandetection”, in Proc. IEEE Conf. Comput. Vision Pattern Recognit., 2005,vol. 1, pp. 886–893.

      [24] X. Meng, Z. Wang, and L. Wu, “Building global image features for scenerecognition”, Pattern Recognit., vol. 45, no. 1, pp. 373–380, 2012.

      [25] X. Tan and B. Triggs, “Enhanced local texture feature sets for face recognition under difficult lighting conditions”, IEEE Trans. Image Process., vol. 19, no. 6, pp. 1635–1650, Jun. 2010.

      [26] Y. Guo, G. Zhao, and M. Pietik¨ainen, “Texture classification using a linear configuration model based descriptor”, in Proc. Brit. Mach. Vision Conf., Pietik¨a, pp. 1–10.

      [27] G. Sharma, S. ulHussain, and F. Jurie, “Local higher-order statistics (LHS) for texture categorization and facial analysis”, in Proc. Eur. Conf. Comput. Vision, 2012, pp. 1–12.

      [28] L. Wolf, T. Hassner, and Y. Taigman, “Descriptor based methods in the wild”, in Proc. Workshop Faces in “Real-Life” Images: Detection, Alignment, Recognit., 2008, pp. 1–14.

      [29] Z. Guo, L. Zhang, and D. Zhang, “A completed modeling of local binarypattern operator for texture classification”, IEEE Trans. Image Process.,vol. 19, no. 6, pp. 1657–1663, Jun. 2010.

      [30] X. Wu and J. Sun, “Joint-scale LBP: A new feature descriptor for texture classification”, Vis. Comput., vol. 33, pp. 317–329, 2015.

      [31] L. Liu, P. Fieguth, Y. Guo, X. Wang, and M. Pietik¨ainen, “Local binary features for texture classification: Taxonomy and experimental study”, Pattern Recognit., vol. 62, pp. 135–160, 2017.

      [32] N. Zhang, R. Farrell, F. Iandola, and T. Darrell, “Deformable part descriptors for fine-grained recognition and attribute prediction”, in Proc. IEEE Int. Conf. Comput. Vision, 2013, pp. 729–736.

      [33] B. Sujatha, V.Vijaya Kumar, P. Harini, “A new logical compact LBP co-occurrence matrix for texture analysis”, International Journal of Scientific & Engineering Research (IJSER) , Vol.3, Iss.2, 2012, pp.1-5, ISSN 2229-5518.

      [34] V. VijayaKumar ,Jangala. SasiKiran , V.V. HariChandana, “ An effective age classification using topological features based on compressed and reduced grey level model of the facial skin”, International journal of image, graphics and signal processing (IJIGSP), , Vol.6, Iss.1, 2013, pp.9-17, ISSN: 2074-9082.

      [35] J. Chen et al., “WLD: A robust local image descriptor”, IEEE Trans.Pattern Anal. Mach. Intell., vol. 32, no. 9, pp. 1705–1720, Sep. 2010.

      [36] J. Mao, J. Zhu, and A. L. Yuille, “An active patch model for real world texture and appearance classification”, in Proc. Eur. Conf. Comput. Vision, 2014, pp. 140–155.

      [37] Y. Xu, X. Yang, H. Ling, and H. Ji, “A new texture descriptor using multifractal analysis in multi-orientation wavelet pyramid”, in Proc. IEEE Conf. Comput. Vision Pattern Recognit., 2010, pp. 161–168.

      [38] R. Margolin, L. Zelnik-Manor, and A. Tal, “OTC: A novel local descriptorfor scene classification”, in Proc. Eur. Conf. Comput. Vision., 2014,pp. 377–391.

      [39] T. Gao, X. Zhao, M. Xiang, and Z. Liu, “Texture feature descriptor usingauto salient feature selection for scale-adaptive improved local difference binary”, Multidimensional Syst. Signal Process., vol. 28, pp. 281–292, 2017.

      [40] M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, and A. Vedaldi, “Describing textures in the wild”, in Proc. IEEE Conf. Comput. Vision Pattern Recognit., 2014, pp. 3606–3613.

      [41] E. Simo-Serra et al., “Discriminative learning of deep convolutionalfeature point descriptors”, in Proc. IEEE Int. Conf. Comput. Vision, 2015, pp. 118–126.

      [42] E. Simo-Serra et al., “Discriminative learning of deep convolutionalfeature point descriptors”, in Proc. IEEE Int. Conf. Comput. Vision, 2015, pp. 118–126.

      [43] M. Cimpoi, S. Maji, and A. Vedaldi, “Deep filter banks for texture recognition and segmentation”, in Proc. IEEE Conf. Comput. Vision Pattern Recognit., 2015, pp. 3828–3836.

      [44] L. Sifre and S. Mallat, “Rotation, scaling and deformation invariant scattering for texture discrimination”, in Proc. IEEE Conf. Comput. Vision Pattern Recognit., 2013, pp. 1233–1240.

      [45] T.-Y. Lin and S. Maji, “Visualizing and understanding deep texture representations”, in Proc. IEEE Conf. Comput. Vision Pattern Recognit., 2016, pp. 2791–2799.

      [46] V. Andrearczyk and P. F. Whelan, “Using filter banks in convolutionalneural networks for texture classification”, Pattern Recognit. Lett., vol. 84, pp. 63–69, 2016.

      [47] J. Li, J. M. Bioucas-Dias, and A. Plaza, “Semi-supervised hyperspectralimage classification using soft sparse multinomial logistic regression”,IEEE Geosci. Remote Sens. Lett., vol. 10, no. 2, pp. 318–322, Mar. 2013.

      [48] J. Li, J. M. Bioucas-Dias, and A. J. Plaza, “Spectral-spatial hyper spectral image segmentation using subspace multinomial logistic regression and Markov random fields”, IEEE Trans. Geosci. Remote Sens., vol. 50, no. 3, pp. 809–823, Mar. 2012.

      [49] F.Melgani and L. Bruzzone, “Classification of hyperspectral remote sensing images with support vector machines”, IEEE Trans. Geosci. Remote Sens., vol. 42, no. 8, pp. 1778–1790, Aug. 2004.

      [50] M. Fauvel, J. A. Benediktsson, J. Chanussot, and J. R. Sveinsson, “Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles”, IEEE Trans. Geosci. Remote Sens., vol. 46, no. 11, pp. 3804–3814, Nov. 2007.

      [51] J. Xia, M. D. Mura, J. Chanussot, P. Du, and X. He, “Random subspace ensembles for hyperspectral image classification with extended morphological attribute profiles”, IEEE Trans. Geosci. Remote Sens., vol. 53, no. 9, pp. 4768–4786, Sep. 2015.

      [52] F. Ratle, G. Camps-Valls, and J.Weston, “Semisupervised neural networks for efficient hyperspectral image classification”, IEEE Trans. Geosci. Remote Sens., vol. 48, no. 5, pp. 2271–2282, May 2010.

      [53] J. Xia, J. Chanussot, P. Du, and X. He, “Spectral-spatial classification for hyperspectral data using rotation forests with local feature extraction and Markov random fields”, IEEE Trans. Geosci. Remote Sens., vol. 53, no. 5, pp. 2532–2546, May 2015.

      [54] M. Elad, Sparse and Redundant Representations—From Theory to Applications in Signal and Image Processing. New York, NY, USA: Springer, 2010.

      [55] J. Mairal, M. Elad, and G. Sapiro, “Sparse representation for color image restoration”, IEEE Trans. Image Process., vol. 17, no. 1, pp. 53–69, Jan. 2008.

      [56] J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma, “Robust facerecognition via sparse representation”, IEEE Trans. Pattern Anal. Mach. Intell., vol. 31, no. 2, pp. 210–227, Feb. 2009.

      [57] M. Elad and M. Aharon, “Image denoising via sparse and redundantrepresentations over learned dictionaries”, IEEE Trans. Image Process.,vol. 15, no. 12, pp. 3736–3745, Dec. 2006.

      [58] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification. 2nd Ed.Hoboken, NJ, USA: Wiley, 2012.

      [59] Y. Chen, N. M. Nasrabadi, and T. D. Tran, “Hyperspectral image classification via kernel sparse representation”, IEEE Trans. Geosci. Remote Sens., vol. 51, no. 1, pp. 217–231, Jan. 2013

      [60] Y. Chen, N. M. Nasrabadi, and T. D. Tran, “Hyperspectral image classification using dictionary-based sparse representation”, IEEE Trans. Geosci. Remote Sens., vol. 49, no. 10, pp. 3973–3985, Oct. 2011.

      [61] J. Li, H. Zhang, Y. Huang, and L. Zhang, “Hyperspectral image classification by nonlocal joint collaborative representation with a locally adaptive dictionary”, IEEE Trans. Geosci. Remote Sens., vol. 52, no. 6, pp. 3707–3719, Jun. 2014.

      [62] J. Li, H. Zhang, and L. Zhang, “Column-generation kernel nonlocal joint collaborative representation for hyperspectral image classification”, ISPRS J. Photogramm., vol. 94, pp. 25–36, 2014.

      [63] E. Zhang, X. Zhang, H. Liu, and L. Jiao, “Fast multifeature joint sparserepresentation for hyperspectral image classification”, IEEE Geosci.Remote Sens. Lett., vol. 12, no. 7, pp. 1397–1401, Jul. 2015.

      [64] H. Zhang, J. Li,Y.Huang, and L. Zhang, “A nonlocal weighted joint sparse representation classification method for hyperspectral imagery”, IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens, vol. 7, no. 6, pp. 2056–2065, Jun. 2014.

      [65] W. Li, Q. Du, and M. Xiong, “Kernel collaborative representation withTikhonov regularization for hyperspectral image classification”, IEEEGeosci. Remote Sens. Lett., vol. 12, no. 1, pp. 48–52, Jan. 2015.

      [66] L. Gan, P. Du, J. Xia, and Y. Meng, “Kernel fused representation-basedclassifier for hyperspectral imagery”, IEEE Geosci. Remote Sens. Lett.,vol. 14, no. 5, pp. 684–688, May 2017.

      [67] Petpon, S. Srisuk, Face recognition with local line binary pattern, in: International Conference on Image and Graphics, 2009, pp. 533–539.

      [68] S. ulHussian and B. Triggs, “Visual recognition using local quantized patterns”, in Proc. Eur. Conf. Comput. Vis., 2012, pp. 716–729.

      [69] S. Liao, A. C. S. Chung, Face recognition by using elongated local binary patterns with average maximum distance gradient magnitude, in: Proceedings of Asian Conference on Computer Vision (ACCV), 2007, pp. 672–679

      [70] L. Nanni, A. Lumini, S. Brahnam, Local binary patterns variants as texture descriptors for medical image analysis, Artif. Intell. Med. 49 (2) (2010) 117–125

      [71] K. Subba Reddy, V. Vijaya Kumar, A.P. Siva Kumar, Classification of Textures Using a New Descriptor Circular and Elliptical-LBP (CE-ELBP), International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 19 (2017) pp. 8844-8853

      [72] P. Brodatz, Texture, 1968, “A Photographic Album for Artists and Designers” , Reinhold, New York, 1968.

      [73] S. Lazebnik, C. Schmid, and J. Ponce, “A sparse texture representationusing local affine regions”, IEEE Trans. Pattern Anal. Mach. Intell.,vol. 27, no. 8, pp. 1265–1278, Aug. 2005.

      [74] http://www.outex.oulu.fi/index.php?page=image_database.

      [75] MIT Vision and Modeling Group, Cambridge, „Vision texture‟, http://vismod.media.mit.edu/pub/


 

View

Download

Article ID: 18504
 
DOI: 10.14419/ijet.v7i3.27.18504




Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.