Various space-time block codes over different modulation techniques using a new sphere decoder

  • Authors

    • Priyanka Mishra Sam Higginbottom University of Agriculture, Technology and Sciences
    • Mehboob UL-Amin University of Kashmir
    • C K. Shukla Sam Higginbottom University of Agriculture, Technology and Sciences
    2018-12-29
    https://doi.org/10.14419/ijet.v7i4.18631
  • Multiple Input Multiple Output (MIMO), Orthogonal Space Time Block Codes (OSTBC), Rotated QOSTBC, Sphere Decoder (SD), Maximal Likelihood (ML), Vertical-Bell Laboratories Layered Space-Time (V-BLAST).
  • Abstract

    In this paper, a detailed analysis based on the combination of spatial multiplexing and space time coding techniques under Rayleigh fading channel constraint in MIMO wireless communication systems is presented. The decoding algorithms of V-BLAST and Sphere Decoder are analyzed and their performance is evaluated using different Orthogonal Space-Time Block Codes techniques, with quasi and rotated quasi-orthogonal space-time block codes. The BER vs SNR curves of all the proposed algorithms have been verified for all modulation schemes including 64 QAM, 16QAM, QPSK and BPSK. A modified K and K1 Sphere decoder are proposed for the significant reduction of BER at higher modulation schemes. BER for 64 QAM modulation is calculated at optimum SNR of 20 dB and it has been shown, it gets significantly reduces when our proposed decoding algorithms are applied.

     

  • References

    1. [1] C. Jiang, H. Zhang, D. Yuan, and H. Chen, “A low complexity decoding scheme for quasi-orthogonal space-time block coding,†in Proc. IEEE Sens. Array Multichannel Signal Process. Workshop, Jul. 2008, pp. 9–12. https://doi.org/10.1109/SAM.2008.4606813.

      [2] L. He and H. Ge, “Fast maximum likelihood decoding of quasi-orthogonal space-time codes,†in Proc. Asilomar Conf. Signals, Syst. Comput.,Monterey, CA, USA, Nov. 2003, vol. 1, pp. 1022– 1026.

      [3] J. Leuschner and S. Yousefi, “A new sub-optimal decoder for quasi-orthogonal space-time block codes,†IEEE Commun. Lett. vol. 12, no. 8, pp. 548–550, Aug. 2008. https://doi.org/10.1109/LCOMM.2008.080471.

      [4] T. Mao and M. Motani, “STBC-VBLAST for MIMO wireless communication systems,†in Proc. of Int. Conf. on Communications, vol.4, pp. 2266-2270, May 2005.

      [5] J. Leuschner and S. Yousefi, “On the ML Decoding of Quasi-Orthogonal Space-Time Block Codes via Sphere Decoding and Exhaustive Search,†IEEE Commun. Lett. vol. 7, no. 11, pp. 4088–4093, Nov. 2008.

      [6] S. J. Alabed, J. M. Paredes, and A. B. Gershman, “A low complexity decoder for quasi-orthogonal space time block codes,†IEEE Trans. Wireless Commun., vol. 10, no. 3, pp. 988–994, Mar. 2011. https://doi.org/10.1109/TWC.2011.010411.101263.

      [7] S. M. Alamouti, â€A simple transmit diversity technique for wireless communicationsâ€, IEEE Journal on Selected Areas in Communications,vol. 16, no. 8, October 1998, pp. 1451-1458. https://doi.org/10.1109/49.730453.

      [8] V. Tarokh, H. Jafarkhani, and A. R. Calderbank, “Space-time block codes from orthogonal designs,†IEEE Trans. Inform. Theory, vol. 45, pp. 1456–1467, July 1999. https://doi.org/10.1109/18.771146.

      [9] L. He and H. Ge, “A New Full-Rate Full-Diversity Orthogonal Space-Time Block Coding Scheme,†IEEE Communications Letters, vol. 7, pp. 590–592, December 2003. https://doi.org/10.1109/LCOMM.2003.821316.

      [10] W. Su and X. Xia, “Quasi-orthogonal space–time block codes with full diversity,†in Proc. IEEE Global Telecommun. Conf. (GLOBECOM),Taipei,Taiwan, R.O.C., 2002, pp. 1098–1102. https://doi.org/10.1117/12.453833.

      [11] Lori A. Dalton and Costas N. Georghiades, “A Full-Rate, Full-Diversity Four-Antenna Quasi-Orthogonal Space-Time Block Code†, IEEE Transactions on wireless communications, vol. 4, no. 2,pp.363-366,march2005. https://doi.org /10.1109/ TWC. 2004. 842945.

      [12] H. Jafarkhani, “A quasi orthogonal space-time block code,†IEEE Transactions on Communications, vol. 49, pp. 1–4, Jan. 2001. https://doi.org/10.1109/26.898239.

      [13] A. Y.-C Peng, I.-M. Kim, and S. Yousefi, “Low-complexity sphere decoding algorithm for quasi-orthogonal space-time block codes,†IEEE Trans. Commun., vol. 54, no. 3, pp. 377–382, Mar. 2006. https://doi.org/10.1109/TCOMM.2006.869881.

      [14] A. Ahmadi, S. Talebi and M. Shahabinejad, “A New Approach to Fast Decode Quasi-Orthogonal Space-Time Block Codesâ€, IEEE Transactions on wireless communications, vol. 14, no. 1,pp. 165-176, january 2015. https://doi.org/10.1109/TWC.2014.2334615.

      [15] V. Tarokh, A. Naguib, N. Seshadri and A. R. Calderbank, “Space-time block codes from orthogonal designs,†IEEE Transactions on Information Theory, vol. 45, pp. 1456–1467, July 1999. https://doi.org/10.1109/18.771146.

      [16] Y. Ding, Y.Wang, J. F .Diouris, “Simplified Robust fixed complexity sphere decoderâ€,19th European Signal Processing Conference ,Barcelona, Spain, August 29 - September 2,pp.116-120, 2011.

      [17] Y. Ding, Y.Wang, J. F .Diouris, “Robust fixed complexity sphere decoderâ€, IEEE GLOBECOM 2010, Miami,Florida, USA, 2010. https://doi.org/10.1109/GLOCOM.2010.5684114.

      [18] Z. Zhenchuan, C. Bo, “A Precoding Scheme for STBC-VBLAST Systemâ€, Wireless Communications, Networking and Mobile Computing (WiCOM), 2011, 7th International Conference on 23-25 Sept. 2011, 978-1-4244-6252-0/11/$26.00 ©2011 IEEE.

      [19] R. Y. Chang, S. J. Lin, W. H. Chung, “Efficient Implementation of the MIMO Sphere Detector:Architecture and Complexity Analysisâ€, IEEE Transactions on vehicular technology, vol. 61, no. 7,pp.3291-3294,september2012. https:// doi.org /10.1109 /TVT. 2012.2204075.

      [20] L. Yazhen, G. Jing, W. Chao, “Research on Quasi-orthogonal space-time block codeâ€, 2nd International Conference on Consumer Electronics, Communications and Networks (CECNet),2012,pp: 530 – 532 https://doi.org/10.1109/CECNet.2012.6202083.

      [21] Thakur, N.S.; Thakur, S.S.; Gogoi, A.K.,“Few More Quasi-Orthogonal Space-Time Block Codes for Four Transmit Antennas†IEEE Intern. Conference on Computational Intelligence and Communication Networks (CICN), vol. 47, pp. 367-374, Oct.2011. https://doi.org/10.1109/CICN.2011.78.

      [22] Xie Wu, Cao Jia-nian and Yang Rui, “Design and analysis of low complexity quasi-orthogonal space-time block code,†The fourth IEEE Conference on Industrial Electronics and Applications, 25-27, May 2009.

      [23] L. Azzam and E. Ayanoglu, “Real-valued maximum likelihood decoder for quasi-orthogonal space-time block codes,†IEEE Tran. Commun., vol. 57, no. 8, pp. 2260–2263, Aug. 2009. https://doi.org/10.1109/TCOMM.2009.08.070470.

      [24] C. Sanchis-Borras J. M. Molina Garcia-Pardo, M. Lienard, P. Degauque and L. Juan LLacer, “Performance of QSTBC and VBLAST Algorithms for MIMO Channels in Tunnelsâ€, IEEE Antennas Wirel. Propag. Lett. vol. 29, pp. 906 – 909, 2010.

      [25] V. Kostina, S. Loyka, “Optimum Power and Rate Allocation for Coded V-BLAST: Average Optimization,†IEEE Trans. Comm., v. 59, no. 3, pp. 877-887, Mar. 2011. https: //doi.org /10.1109 /TCOMM.2011.010411.090561.

      [26] Rana R, Rathod J. Performance Analysis of Different Channel Estimation Techniques with Different Modulation for VBLAST MMSE MIMO-OFDM System. International Conference on Wireless Communications, Signal Processing and Networking. 2016 March;p.236-39.Crossrefhttps://doi.org/ 10.1109/ WiSPNET.2016 .7566127.

      [27] Gurpreet Singh, Priyanka Mishra and Rahul Vij,“Performance Evaluation of ML-VBLAST MIMO decoder using different antenna configuration using Ricean and Rayleigh Channelâ€, 2013 International Conference on Communication Systems and Network Technologies,978-0-7695-4958-3/13 $26.00 © 2013 IEEE https://doi.org/10.1109/CSNT.2013.46.

      [28] J. Cortez, R. Palacio.J. C. R.-Pacheco, E. R. Ibarra, “A Very Low Complexity Near ML Detector Based on QRD-M Algorithm for STBC-VBLAST Architectureâ€, in Proc. of 7th IEEE Latin-American Conference on Communications (LATINCOM),November 2015, Peru.

      [29] Y.Ding, N. Li, Y. Wang, S. Feng, and H. Chen, “Widely Linear Sphere Decoder in MIMO Systems by Exploiting the Conjugate Symmetry of Linearly Modulated Signalsâ€,IEEE Transactions on signal processing, vol. 64, no. 24, 6428-6442,Dec. 15, 2016. https://doi.org/10.1109/TSP.2016.2598317.

      [30] L.G. Barbero, and J.S. Thompson, â€A Fixed-Complexity MIMO Detector Based on the Complex Sphere Decoder,†in 7th IEEE Workshop on Signal Processing Advances in Wireless Communications (SPAWC ’06), Cannes, France, July 2006, pp. 1-5. https://doi.org/10.1109/SPAWC.2006.346388.

      [31] T. G. Markiewicz, “Faster than Sphere (Decoder). A Demodulation Algorithm for Multidimensional Constellationsâ€, Wireless Communication Systems (ISWCS), pp. 136-142, 20 Oct., 2016, https://doi.org/10.1109/ISWCS.2016.7600889.

      [32] R. Vij, P. Mishra, G. Singh, “Performance Evaluation of Comparison of Sphere Decoder with OtherEqualization Techniques on 2x2 MIMO Systems Using Rayleigh and Rician Flat Fading Channelsâ€,2014 Fourth International Conference on Communication Systems and Network Technologies, 2014,pp: 182 - 186, https://doi.org/10.1109/CSNT.2014.44.

      [33] V. Tarokh, N. Seshadri, and A. R. Calderbank, “Space time codes for high data rate wireless communication: performance analysis and code construction,†IEEE Trans. Inform. Theory, vol. 44, pp. 744–765, Mar.1998. https://doi.org/10.1109/18.661517.

  • Downloads

  • How to Cite

    Mishra, P., UL-Amin, M., & K. Shukla, C. (2018). Various space-time block codes over different modulation techniques using a new sphere decoder. International Journal of Engineering & Technology, 7(4), 4282-4289. https://doi.org/10.14419/ijet.v7i4.18631

    Received date: 2018-08-30

    Accepted date: 2018-10-04

    Published date: 2018-12-29