Extraction Zoning Feature to Diabetic Retinopathic Detection Models

  • Authors

    • Erwin Sirait
    • Muhammad Zarlis
    • Syahril Efendi
    2018-06-20
    https://doi.org/10.14419/ijet.v7i3.2.18757
  • Bayes Methid, Detection, Diabetic Retinopathic
  • Abstract

    The health sector is one area that has been applying various computer technologies. To diagnose a patient's illness was already done with computers. One is to diagnose diabetic Retinopathic disease that can happen to anyone. Diabetic Retinopathy, which is one of the complications caused by diabetes. Symptoms shown from this disease is mikroneurisma, hemorrhages, excudets and neovascularos. The detection of the disease is done by looking at the information on the retinal image and can then be classified according to severity. This research aims to develop a method that can be used utuk classify Diabetic Retinopathy. The process of classification is based    fiture-fiture the retinal image obtained by the extraction process using extraction methods Zoning. The process is then performed to classify the Bayes Method and the results obtained Diabetic Retinopahty classification. The results of this study yield maximum   accuracy 65%.

     

  • References

    1. [1] C. Jayakumari and T. Santhanam, “Detection of hard exudates for diabetic retinopathy using contextual clustering and fuzzy art neural network,†Asian Journal of Information Technology. 2007.

      [2] A. Sopharak, B. Uyyanonvara, and S. Barman, “Automatic exudate detection from non-dilated diabetic retinopathy retinal images using Fuzzy C-means clustering,†Sensors, 2009.

      [3] W. Setiawan, K. Adi, and A. Sugiharto, “Sistem Deteksi Retinopati Diabetik Menggunakan Support Vector Machine,†J. Sist. Inf. Bisnis 03, 2012.

      [4] R. Tappang, H. Sumual, and L. Rares, “INDIKASI FOTOKOAGULASI LASER PADA PASIEN RETINOPATI DIABETIK DI BALAI KESEHATAN MATA PROPINSI SULAWESI UTARA PERIODE JANUARI – DESEMBER 2012,†e-CliniC, vol. 2, no. 1, 2014.

      [5] Y. S. Kurniawan, I. B. Hidayat, and S. Aulia, “Deteksi dan klasifikasi tingkat keparahan retinopati diabetes dengan menggunakan metode klasifikasi k-nearest neighbor,†e-Proceeding Eng., vol. 2, no. 1, pp. 468–475, 2015.

      [6] S. Ilyas and S. Yulianti, Ilmu Penyakit Mata, 4th Editio. Badan Penerbit FKUI, 2011.

      [7] B. Pradhan and D. Kundu, “Bayes estimation and prediction of the two-parameter gamma distribution,†J. Stat. Comput. Simul., 2011.

      [8] J. Albert, R. Gentleman, G. Parmigiani, and K. Hornik, Bayesian computation with R. 2009.

      [9] L. Sherwood, “Fisiologi manusia : dari sel ke sistem edisi 6,†in Polish Journal of Surgery, 2011.

  • Downloads

  • How to Cite

    Sirait, E., Zarlis, M., & Efendi, S. (2018). Extraction Zoning Feature to Diabetic Retinopathic Detection Models. International Journal of Engineering & Technology, 7(3.2), 786-788. https://doi.org/10.14419/ijet.v7i3.2.18757

    Received date: 2018-09-02

    Accepted date: 2018-09-02

    Published date: 2018-06-20