Performance Analysis of Discone Antenna for Radio Frequency Interference (RFI) Measurement

  • Authors

    • R Umar
    • S N. Hazmin
    • M S. Marhamah
    • A A. Aziz
    • M A. N. Zulaikha
    • A R. S. N. Dianah
    • M Roshidah
    • M T. Ali
    • N H. Abd Rahman.
    • A N. Dagang
    • H Jaafar
    • M K. A Kamarudin
    • M E. Toriman
    https://doi.org/10.14419/ijet.v7i3.14.18814
  • Radio frequency interference (RFI), Antenna simulation and measurement, Hydrogen line.
  • Abstract

    Radio signal is basically generated from natural sources and human daily activity. In detecting radio astronomical signals from outer space, radio frequency interference (RFI) level monitoring and management are required to avoid the signal’s disturbance for better radio astronomical observation. RFI profile need to be developed and the measurement should be done using appropriate antenna. Using an appropriate antenna is vital, so the signals detected are strong. This paper verified the performance of discone antenna for RFI study for Hydrogen line (HI). Three stages were performed: antenna simulation using Computer Simulation Technology (CST) Studio Suite software, antenna measurements done in anechoic chamber and RFI survey at Balai Cerap Kusza (BCK). Antenna simulation and measurement were then compared. We found that optimized frequency ranges are between 1.38 GHz and 2.14 GHz. RFI monitoring was done and we obtained the average power level of -76.2331 dBm (+/-0.7385) detected at BCK. This value exceeds the ITU-R RA.769.2 threshold level (-220 dBW) by 30.4601 dB.

     


     

  • References

    1. [1] Sabri, N. H., Umar, R., Mokhtar, W. W., Adli, W. Z., Abidin, Z. Z., Ibrahim, Z. A., Azid A, Juahir H, Toriman ME, & Kamarudin, M. K. (2015). Preliminary study of vehicular traffic effect on radio signal for radio. Jurnal Teknologi, 75(1), 313-318.

      [2] Sabri, N., Syed Zafar, S., Umar, R., & Wan Mokhtar, W. (2015). Radio frequency interference: The effect of ambient carbon dioxide (Co2) concentration on radio signal for radio astronomy purposes. Malaysian Journal of Analytical Sciences, 19(5), 1065–1071.

      [3] Vara, B. K., & Prudhvi, P. Y. (2015). Design and analysis of discone antenna. International Journal of Latest Research in Engineering and Technology, 1(3), 43–51.

      [4] Li, X., Zheng, H. L., Quan, T., & Chen, Q. (2012). A printed discone ultra-wideband antenna with dual-band notched characteristics. Progress in Electromagnetics Research C, 27, 41–53.

      [5] Umar, R., Abidin, Z. Z., Ibrahim, Z. A., Gasiprong, N., Asanok, K., Nammahachak, S., Aukkaravittayapun S, Somboopon P, Prasit A, Prasert N, Hamidi Z. S. (2013). The study of Radio Frequency Interference (RFI) in altitude effect on radio astronomy in Malaysia and Thailand. Middle East Journal of Scientific Research, 14(6), 861-866.

      [6] Umar, R., Sabri, N. H., Zainal Abidin, Z., Azid, A., Juahir, H., Toriman, M. E., & Kamarudin, M. K. A. (2015). Preliminary study of radio astronomical lines effect of rain below 2.9 GHz. Jurnal Teknologi, 75(1), 7-11

      [7] Marhamah, M. S., Umar, R., Hazmin, S. N., Zafar, S. N. A. S., & Mat, R. (2018). The influence of solar radiation on radio signal at UHF band. Journal of Fundamental and Applied Sciences, 10(1S), 268-277

      [8] Zafar, S. S., Hazmin, S. N., Mat, R., Marhamah, M. S., & Umar, R. (2018). Wind speed on ultra high frequency (UHF) of radio signal. Journal of Fundamental and Applied Sciences, 10(1S), 278-287.

      [9] Shafie, M. M., Umar, R., Sabri, N. H., Afandi, N. Z. M., & Ibrahim, Z. A. (2017). Radio environment analysis at Balai Cerap KUSZA for solar burst study. International Journal on Advanced Science, Engineering and Information Technology, 7(4), 1441-1447

      [10] Dianah, A. R. S. N., Umar, R., Kamarudin, M. K. A., Dagang, A. N., & Hazmin, S. N. (2017). Exposure level from selected base station tower around Kuala Nerus: A preliminary analysis. Journal of Fundamental and Applied Sciences, 9(5S), 367-380

      [11] Dianah, A. R. S. N., Hazmin, S. N., Umar, R., Jaafar, H., Kamarudin, M. K. A., Dagang, A. N., & Syafiqah, H. N. (2018). Spatial model of public non-ionizing radiation exposure on selected base station around Kuala Nerus. Journal of Fundamental and Sciences, 10(1S), 523-540

      [12] Amin, M., Hong, J. S., Luo, C. M., Ming, X., & Abdullah, M. (2016). A high gain simple cubic dielectric resonator antenna with parasitic metal strip for ISM band WLAN applications. Proceedings of the 2nd IEEE International Conference on Computer and Communications, pp. 3035-3038.

      [13] Shakib, M. N., Islam, M. T., & Misran, N. (2008). Design of a broadband low cross-polarization W-shape microstrip patch antenna for MIMO system. Proceedings of the IEEE International RF and Microwave Conference, pp. 311-313.

      [14] Mat, R., Shafie, M. M., Ahmad, S., Umar, R., Seok, Y. B., & Sabri, N. H. (2016). Temperature effect on the tropospheric radio signal strength for UHF Band at Terengganu, Malaysia, 6(5), 770–774.

      [15] Afandi, M., Zulaikha, N., Umar, R., Sabri, N. H., Abidin, Z. Z., Ibrahim, Z. A., Afandi M, Zulaikha N, Umar R, Sabri N. H., Abidin Z. Z., Ibrahim Z. A., Ishak A. N., Nurlisman Z. K., & Monstein, C. (2017). Identification of solar radio burst type II and Type III for space weather monitoring. Advanced Science Letters, 23(2), 1281-1284.

      [16] Dianah, A. R. S. N., Hazmin, S. N., Umar, R., Kamarudin, M. K. A., & Dagang, A. N. (2017). A review on electromagnetics (EM) exposure measurement techniques from base station. Journal of Fundamental and Applied Sciences, 9(2S), 182–198

      [17] Jusoh, M. H., Yumoto, K., Hamid, N. A., & Liu, H. (2012). Electromagnetic coupling on solar-terrestrial system: Possible effects on seismic activities. Proceedings of the IEEE International Symposium on Antennas and Propagation, pp. 1160-1163.

      [18] ITU. (2003). Recommendation ITU-R RA. 769-2.

      [19] Roslan, U., Nor, H. S., Zainol, A. I., Zamri, Z. A., Asyaari, M. (2015). Measurement technique in radio frequency interference (RFI) study for radio astronomy purposes. Malaysian Journal of Analytical Sciences, 19(5), 960-965.

      [20] Umar, R., Abidin, Z. Z., Ibrahim, Z. A., Gasiprong, N., Asanok, K., Nammahachak, S., Aukkaravittayapun S, Somboopon P, Prasit A, Prasert N, Hamidi Z. S. (2013). The study of Radio Frequency Interference (RFI) in altitude effect on radio astronomy in Malaysia and Thailand. Middle East Journal of Scientific Research, 14(6), 861-866.

      [21] Mohd Afandi, N. Z., Umar, R., Ibrahim, Z. A., Sabri, N. H., & Shafie, M. M. (2017). Influence of partial solar eclipse on the radio signal during 9 March 2016. International Journal on Advanced Science, Engineering and Information Technology, 7(2), 688.

      [22] Sabri, N. H., Azlan, A. W., Umar, R., Sulan, S. S., Ibrahim, Z. A., & Mokhtar, W. Z. A. W. (2015). The effect of solar radiation on radio signal for radio astronomy purposes. Malaysian Journal of Analytical Sciences, 19(6), 1374-1381.

      [23] Sabri, N., Syed Zafar, S., Umar, R., & Wan Mokhtar, W. (2015). Radio frequency interference: The effect of ambient carbon dioxide (Co2) concentration on radio signal for radio astronomy purposes. Malaysian Journal of Analytical Sciences, 19(5), 1065–1071.

  • Downloads

  • How to Cite

    Umar, R., N. Hazmin, S., S. Marhamah, M., A. Aziz, A., A. N. Zulaikha, M., R. S. N. Dianah, A., Roshidah, M., T. Ali, M., H. Abd Rahman., N., N. Dagang, A., Jaafar, H., K. A Kamarudin, M., & E. Toriman, M. (2018). Performance Analysis of Discone Antenna for Radio Frequency Interference (RFI) Measurement. International Journal of Engineering & Technology, 7(3.14), 333-336. https://doi.org/10.14419/ijet.v7i3.14.18814

    Received date: 2018-09-02

    Accepted date: 2018-09-02