Antiviral Activity of Cynometra Cauliflora Leaves Methanolic Extract Towards Dengue Virus Type 2

  • Authors

    • Noor Zarina Abd Wahab
    • Norhidayah Badya
    • Nazlina Ibrahim
    • Mohd Khairul Amri Kamarudin
    • Hafizan Juahir
    • Mohd Ekwan Toriman
    https://doi.org/10.14419/ijet.v7i3.14.18816
  • Cynometra cauliflora, methanol extract, antiviral activity, antiviral, dengue virus.
  • The present study is aimed at determining cytotoxicity and antiviral activities for methanolic extract obtained from leaves of Cynometra cauliflora. Cytotoxicity screening against Vero cells using MTT assay showed that the CC50 values for the extract was 36 mg/ml and the 50% Effective Concentration, EC50, was 2.19 mg/ml. The antiviral activity towards dengue virus type 2 (DENV-2) was determined using MTT method. Three treatments were used in the antiviral test; 1) post-treatment, 2) pre-treatment, and 3) virucidal. The results revealed that the post-treatment was more effective in inhibiting viral replication compared to pre-treatment and virucidal assay. The selectivity index (SI = CC50 / EC50) for the extract was 16. The findings indicated that the extract prepared from C. cauliflora was non cytotoxic to the cell with potential antiviral activity.

     

     

  • References

    1. [1] Abd Aziz A.F. & Mohammad Iqbal. (2013). Antioxidant activity and phytochemical composition of Cynometra cauliflora. Journal of Experimental and Integrative Medicine, 3(4):337-341.

      [2] Abdul Wahab, N.Z., Shahar, S., Abdullah-Sani, H., Lope Pihie, A.H. & Ibrahim, N. (2011). Antioxidant, antibacterial and antiviral properties of Goniothalamus umbrosus leaves methanolic extract. African Journal of Microbiology Research, 5(20): 3138-3143.

      [3] Back, A. T. & Lundkvist, A. (2013). Dengue viruses-An overview. Infection Ecology and Epidemiology, 3(1):1-21.

      [4] Guzman, M. G. & Kouri, G. (2001). Dengue: An update. Lancet Infect Dis, 2:33–42.

      [5] Low, J. G. H, Ooi, E. E. & Vasudevan, S. G. (2017). Current status of dengue therapeutics research and development. Journal of Infectious Diseases, 215(S2):S96–102.

      [6] Zandi, K., Teoh, B. T., Sam, S. S., Wong, P. F., Mustafa, M. R., & AbuBakar, S. (2012). Novel antiviral activity of baicalein against dengue virus. BMC Complementary and Alternative Medicine, 12(1):1-9.

      [7] Moghaddam, E., Teoh, B. T., Sam, S. S., Lani, R., Hassandarvish, P., Chik, Z., Yueh, A., Abubakar, S., & Zandi, K. (2014). Baicalin, a metabolite of baicalein with antiviral activity against dengue virus. Scientific Reports, 4:1-8.

      [8] Kumar, S., & Pandey, A. K. (2013). Chemistry and biological activities of flavonoids: An overview. Scientific World Journal, 2013:1-16.

      [9] Lim, T.K. (2012). Edible medicinal and non-medicinal plants. Springer.

      [10] Ado, M. A., Abas, F., Ismail, I. S., Ghazali, H.M. & Shaari, K. (2014). Chemical profile and antiacetylcholinesterase, antityrosinase, antioxidant and αâ€glucosidase inhibitory activity of Cynometra cauliflora L. leaves. J Sci Food Agric, 95(3):635-642.

      [11] Tajudin, T. J., Mat, N., Siti-Aishah, A. B, Yusran, A. A, Alwi, A. & Ali, A. M. (2012). Cytotoxicity, antiproliferative effects, and apoptosis induction of methanolic extract of Cynometra cauliflora Linn. whole fruit on human promyelocytic leukemia HL-60 cells. Evidence-Based Complementary and Alternative Medicine, 12:1-6.

      [12] Ado, M. A., Abas, F., Mohammed, A. S. & Ghazali, H. M. (2013). Anti-and pro-lipase activity of selected medicinal, herbal and aquatic plants, and structure elucidation of an anti-lipase compound. Molecules, 18:14651–1469.

      [13] Azalina, A. & Iqbal, M. (2013). Antioxidant activity and phytochemical composition of Cynometra cauliflora. Journal of Experimental and Integrative Medicine, 3(4):337-341.

      [14] Saidan, N. H., Hamil, M. S., Memon, A. H., Abdelbari, M. M., Hamdan, M. R, Mohd, K. S, Abdul Majid, A. M. S & Ismail, Z. (2015). Selected metabolites profiling of Orthosiphon stamineus benth leaves extracts combined with chemometrics analysis and correlation with biological activities. BMC Complementary and Alternative Medicine, 15:1-12.

      [15] Castillo, F., Hernández, D., Gallegos, G., Rodríguez, R., Aguilar, C. N. (2012). Antifungal properties of bioactive compounds from plants. In D. Dhanasekaran, N. Thajuddin, & A. Panneerselvam (Eds.), Fungicides for Plant and Animal Diseases. London: IntechOpen, pp. 81-106.

      [16] Alanis, A. D., Calzada, F., Cervantes, J. A., Torres, J., & Ceballos, G. M. (2005). Antibacterial properties of some plants used in Mexican traditional medicine for the treatment of gastrointestinal disorders. Journal of Ethnopharmacology, 100(1-2):153-157.

      [17] N. Z. A. Wahab., N. Ibrahim., M. K. A. Kamarudin., F. Lananan., H. Juahir., A. Ghazali. & A. F. Ireana Yusra. (2018). Cytotoxicity and antiviral activity of Annona muricata aqueous leaves extract against dengue virus type 2. Journal of Fundamental and Applied Sciences, 10(1S):580-589.

      [18] Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65(1-2):55–63.

      [19] Schmidtke, M., Schnittler, U., Jahn, B., Dahse, H. & Stelzner, A. (2001). A rapid assay for evaluation of antiviral activity against cox-sackie virus B3, influenza virus A, and herpes simplex virus type 1. Journal of Virological Methods, 95(1-2):133– 143.

      [20] N. Z. A. Wahab., N. Ibrahim., M. K. A. Kamarudin., F. Lananan., H. Juahir. & A. Ghazali. (2018). In vitro antiviral activity of Orthosiphon stamineus extract against dengue virus type 2. Journal of Fundamental and Applied Sciences, 10(1S):541-551.

      [21] Orhan, I., Deliorman-Orhan, D. & Ozçelik, B. (2009). Lipophilic extracts of various edible plants and their fatty acids. Food Chemistry, 115:701-705.

      [22] Monath, T. P., Woodall, J. P., Gubler, D. J., Yuill, T. M., Mackenzie, J. S., Martins, R. M., Reiter, P. & Heymann, D. L. (2016). Yellow fever vaccine supply: A possible solution. The Lancet, 387:1599-1600.

      [23] Dyer, O. (2015). Zika virus spreads across Americas as concerns mount over birth defects. British Medical Journal, 351:1-2.

      [24] Mackeen, M. M., Ali, A. M., El-Sharkawy, S. H., Manap, M.Y., Salleh, K.M., Lajis, N.H. & Kawazu, K. (1997). Antimicrobial and cytotoxic properties of some Malaysian traditional vegetables (Ulam). International Journal of Pharmacognosy, 35(3):174–178.

      [25] Habsah, M., Amran, M., Mackeen, M. M, Lajis, N. H., Kikuzaki, H., Nakatani, N., Rahman, A. A, Ghafar. & Ali, A. M. (2000). Screening of Zingiberaceae extracts for antimicrobial and antioxidant activities. Journal of Ethnopharmacology, 72(3):403–410.

      [26] Murakami, A., Ali, A. M., Mat-Salleh, K., Koshimizu, K. & Ohigashi, H. (2000). Screening for the in vitro anti-tumor-promoting activities of edible plants from Malaysia. Bioscience, Biotechnology and Biochemistry, 64(1):9–16.

      [27] Hamid, M., Bohari, S. P. M., Bastami, M. S., Ali, A. M., Mustapha, N. M. & Shari, K. (2008). Evaluation of the insulinotrophic activity of Malaysian traditional plants extract. Journal of Biological Sciences, 8(1):201–204.

      [28] Ahmad, R., Ali, A. M., Israf, D. A., Ismail, N. H., Shaari, K. & Lajis, N. H. (2005). Antioxidant, radical-scavenging, anti-inflammatory, cytotoxic and antibacterial activities of methanolic extracts of some Hedyotis species. Life Sciences, 76(17):1953–1964.

      [29] Abd Wahab, N. Z., Bunawan, H. & Ibrahim, N. (2015). Cytotoxicity and antiviral activity of methanol extract from Polygonum minus. AIP Conference Proceedings, 1678(1):1-4.

      [30] Lee ATC, Azimahtol HLP, Tan AN (2003). Styrylpyrone derivative (SPD) induces apoptosis in a caspase-7-dependent manner in the human breast cancer cell line MCF-7. Cancer Cell International, 3:1-8.

      [31] Erum I., Kamariah, A. S., Abddalla, J. M., Linda, L. B. L., Nur-Nazurah, A. (2016). Antimicrobial, anticancer, and cytotoxicity activities of a crude methanolic extract from the bark of goniothalamus velutinus (airy shaw) collected from Brunei Darussalam. International Journal of Pharmacognosy and Phytochemical Research, 8(1):95-103.

      [32] Nazlina, I., Norha, S., Noor Zarina, A.W. & Ahmad, I.B. (2008). Cytotoxicity and antiviral activity of melastoma malabathricum extracts. Malaysian Applied Biology, 37(2):53–55.

      [33] Vikram, P., Chiruvella, K. K., Abdullah Ripain, I. H. & Arifullah, M. (2014). A recent review on phytochemical constituents and medicinal properties of kesum (Polygonum minus Huds.). Asian Pacific Journal of Tropical Biomedicine, 4(6):430–435.

      [34] Tang, Y. Q., Lee, S. H. & Sekaran, S. D. (2014). Phyllanthus sp a local plant with multiple medicinal properties. Journal of Health and Translational Medicine, 17(2):1-8.

      [35] Dargan, D. J. (1997). Herpes simplex virus protocols. Humana Press.

      [36] Honess, R. W. & Roizman, B. (1974). Regulation of herpes macromolecular synthesis. Cascade regulation of the synthesis of three groups of viral proteins. J. Virol., 14:8-19.

      [37] Guardia, C. D. L. & Lleonart, R. (2014). Progress in the identification of dengue virus entry/fusion inhibitors. BioMed Research International, 2014:1-13.

  • Downloads

  • How to Cite

    Zarina Abd Wahab, N., Badya, N., Ibrahim, N., Khairul Amri Kamarudin, M., Juahir, H., & Ekwan Toriman, M. (2018). Antiviral Activity of Cynometra Cauliflora Leaves Methanolic Extract Towards Dengue Virus Type 2. International Journal of Engineering & Technology, 7(3.14), 344-347. https://doi.org/10.14419/ijet.v7i3.14.18816