Pattern Recognition for Varieties of Malaysian Herb, Ficus deltoidea Jack through Chemometric Applications from GC-MS Fingerprinting

 
 
 
  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract


    Pattern based approach has been used for quality control for identification and authentication of herbal medicines including plant that having varietal issue, Ficus deltoidea Jack (FD). Chemical fingerprinting of FD varieties were profiled by Gas Chromatography-Mass Spectrometry (GC-MS). The aim was to profile and classify the untargeted volatile compounds which commonly occur in FD varieties for pattern recognition purpose. Chromatographic data from GC-MS fingerprint of FD varieties were analyzed using chemometric applications; principal component analysis (PCA), hierarchical cluster analysis (HCA) and discriminant analysis (DA). Twenty-two major volatile compounds found were commonly occurred and stable in FD varieties. PCA give out total variance of 33.13%, while HCA generated three clusters. However, DA confirmed FD varieties only grouped into two groups, which suggested that the unidentified compounds at tR: 8.85, 14.80, 16.25, 16.55 and 29.06 were the most significant parameters (p < 0.05) to discriminate both grouping. This finding indicates that 22 volatile compounds that commonly occur in FD varieties do not contribute to the discrimination and var. bilobata revealed to have specific volatile compounds that distinguish it from other varieties. The use of GC-MS fingerprinting and chemometric techniques provides useful and promising information for authentication and quality control of herbal medicines.

     

     


  • Keywords


    Ficus deltoidea Jack; Quality control; Chemometrics; GC-MS Fingerprinting; Volatile compounds; Malaysian Herbs.

  • References


      [1] Liang, Y. Z., Xie, P., & Chan, K. (2004). Quality control of herbal medicines. Journal of Chromatography B, 812, 53-70.

      [2] Garg, V., Dhar, V. J., Sharma, A., & Dutt, R. (2012). Facts about standardization of herbal medicine: A review. Journal of Chinese Intergrative Medicine, 10(10), 1077-1083.

      [3] Tistaert, C., Thierry, L., Szandrach, A., Dejaegher, B., Fan, G., Frédérich, M., & Vander Heyden, Y. (2011). Quality control of Citri reticulatae pericarpium: Exploratory analysis and discrimination. Analytica Chimica Acta, 705(1-2), 111-122.

      [4] Mok, D. K. W., & Chau, F. T. (2006). Chemical information of Chinese medicines: A challenge to chemist. Chemometrics and Intelligent Laboratory Systems, 82, 210-217.

      [5] Zeng, Z., Chau, F. T., Chan, H. Y., Cheung, C. H., Lau, T. Y., Wei, S., Mok, D. K. W., Chan, C. O., & Liang, Y. (2008). Recent advances in the compound-oriented and pattern-oriented approaches to the quality control of herbal medicines. Chinese Medicine, 3(1), 1-7.

      [6] Yongyu, Z., Shujun, S., Jianye, D., Wenyu, W., Huijuan, C., Jianbing, W., & Xiaojun, G. (2011). Quality control method for herbal medicine-Chemical fingerprint analysis. In Y. Shoyama (Ed.), Quality Control of Herbal Medicines and Related Areas. London: IntechOpen, pp. 171-194.

      [7] Liang, X. M., Jin, Y., Wang, Y. P., Jin, G. W., Fu, Q., & Xiao, Y. S. (2009). Qualitative and quantitative analysis in quality control of traditional Chinese medicines. Journal Chromatography A, 1216, 2033-2044.

      [8] Musa, Y., Yahya, H., Wan Zaki, W. M., & Zaharah, A. (2005). Emas Cotek- A new potential medicinal plant. Bulletin Teknologi Tanaman, 1, 29-36.

      [9] Adam, Z., Khamis, S., Ismail, A., & Hamid, M. (2010). Inhibitory properties of Ficus deltoidea on α-glucosidase activity. Research Journal of Medicinal Plant, 4(2), 61-75.

      [10] Abdullah, Z., Hussain, K., Ismail, Z., & Mat Ali, R. (2009). Anti-inflammatory activity of standardized extracts of leaves of three varieties of Ficus deltoidea. International Journal of Pharmaceutical and Clinical Research, 1(3), 100-105.

      [11] Wei, L. S., Wee, W., Siong, J. Y. F., & Syamsumir, D. F. (2011). Characterization of antioxidant, antimicrobial, anticancer property and chemical composition of Ficus deltoidea Jack leaf extract. Journal of Biologically Active Products from Nature, 1(1), 2231-1866.

      [12] Sulaiman, M. R., Hussain, M. K., Zakaria, Z. A., Somchit, M. N., Moin, S., Mohamad, A. S., & Israf, D. A. (2008). Evaluation of the antinociceptive activity of Ficus deltoidea aqueous extract. Fitoterapia, 79, 557-561

      [13] Omar, M. H., Mullen, W., & Crozier, A. (2011). Identification of proanthocyanidin dimers and trimers, flavones C-glycosides, and antioxidants in Ficus deltoidea, a Malaysian herbal tea. Journal of Agricultural and Food Chemistry, 59, 1363-1369.

      [14] Hasan, N. N. F., Mat, N., Abdul Rashid, N. Z., Khairil, M., & Ali, A. M. (2014). Leaf morphology and anatomy of 7 varieties of Ficus deltoidea (Moraceae). Turkish Journal of Botany, 38, 677-685

      [15] Martinez, W. L., & Martinez, A. R. (2005). Exploratory data analysis with MATLAB. Chapman and Hall/CRC Press UK.

      [16] Singh, K. P., Malik, A., & Sinha, S. (2005). Water quality assessment and apportionment of pollution sources of Gomti River (India) using multivariate statistical techniques-A case study. Analytica Chimica Acta, 538, 355-374

      [17] Kannel, P. R., Lee, S., Kanel, S. R., & Khan, S. P. (2007). Chemometric application in classification and assessment of monitoring locations of an urban system. Analytica Chimica Acta, 390-399.

      [18] Vega, M., Pardo, R., Barrado, E., & Debán. (1998). Assessment of seasonal and polluting effects on the quality of river water by exploratory data analysis. Pergamon, 32(12), 3581-3592.

      [19] Retnam, A., Zakaria, M. P., Juahir, H., Aris, A. Z., Zali, M. A., & Kasim, M. F. 2013). Chemometric techniques in distribution, characterization and source apportionment of polycyclic aromatic hydrocarbons (PAHS) in aquaculture sediments in Malaysia. Marine Pollution Bulletin, 69, 55-66.

      [20] Simeonov, V., Einax, J. W., Stanimirova, I., & Kraft, J. (2002). Environmetric modelling and interpretation of river water monitoring data. Analytical and Bioanalytical Chemistry, 374, 898-905

      [21] Azid, A., Juahir, H., Toriman, M. E., Endut, A., Kamarudin, M. K. A., Rahman, A., & Nordin, M. (2015). Source apportionment of air pollution: A case study in Malaysia. Jurnal Teknologi, 72(1), 83-88.

      [22] Statheropoulos, M., Vassiliadis, N., & Pappa, A. (1998). Principal component and conical correlation analysis for examining air pollution and meteorological Data. Pergamon, 32(6), 1087-1095

      [23] Liu, C. W., Lin, K. H., & Kuo, Y. M. (2003). Application of factor analysis in the assessment of groundwater quality in Blackfoot Disease area in Taiwan. The Science of the Total Environment, 313, 77-89.

      [24] Juahir, H., Ismail, A., Mohamed, S. B., Toriman, M. E., Kassim, A. M., Zain, S. M., Ahmad, W. K., Wah, W. K., Zali, M. A., Retnam, A., & Taib, M. Z. M. (2017). Improving oil classification quality from oil spill fingerprint beyond six sigma approach. Marine Pollution Bulletin, 120(1-2), 322-332.

      [25] Bailey, N. J. C., Sampson, J., Hylands, P. J., Nicholson, J. K., & Holmes, E. (2002). Multi-component metabolic classification of commercial feverfew preparations via high-field 1H-NMR spectroscopy and chemometrics. Planta Medica, 68, 734-738.

      [26] Jollife, I. T. (2002). Principal component analysis. Springer-Verlag.

      [27] Azid, A., Juahir, H., Toriman, M. E., Endut, A., Rahman, A., Nordin, M., Kamarudin, M. K., & Umar, R. (2015). Identification source of variation on regional impact of air quality pattern using chemometric. Aerosol and Air Quality Research, 15, 1545-1558.

      [28] Ismail, A., Toriman, M. E., Juahir, H., Zain, S. M., Habir, N. L. A., Retnam, A., Kamaruddin, M. K., Umar, R., & Azid, A. (2016). Spatial assessment and source identification of heavy metals pollution in surface water using several chemometric techniques. Marine Pollution Bulletin, 106(1), 292-300.

      [29] Al-Odaini, N. A., Zakaria, M. P., Zali, M. A., Juahir, H., Yaziz, M. I., & Surif, S. (2012). Application of chemometrics in understanding the spatial distribution of human pharmaceuticals in surface water. Environmental Monitoring and Assessment, 184(11), 6735-6748.

      [30] Forina, M., Armanino, C., & Raggio, V. (2002). Clustering with dendograms on interpretation variables. Analytica Chimica Acta, 454, 13-19.

      [31] Juahir, H., Zain, S. M., Aris, A. Z., Yusof, M. K., Samah, M. A. A., & Mokhtar, M. (2010). Hydrological trend analysis due to land use changes at Langat River Basin. Environment Asia, 3, 20-31.

      [32] Sheng, Y., & Chen, X. B. (2009). Isolation and identification of an isomer of β-sitosterol by HPLC and GC-MS. Health, 1(3), 203-206.

      [33] Tripathi, N., Kumar, S., Sigh, R., Singh, C. J., Singh, P., & Varshmey, V. K. (2013). Phytoconstituents from the roots of Girardinia heterophylla (Decne). International Journal of Biomedical and Advance Research, 4(8), 545-550.

      [34] Nishioka, I., Ikekawa, N., Yagi, A., Kawasaki, T., & Tsukamoto, T. (1965). Studies on the plant sterols and triterpenes part II: Separation of stigmasterol, β-sitosterol and campesterol, and about so-called “γ-sitosterol”. Chem. Pharm. Bull, 13(3), 379-384.

      [35] Hamid, S. H. A., Lananan, F., Khatoon, H., Jusoh, A., & Endut, A. (2016). A study of coagulating protein of Moringa oleifera in microalgae bio-flocculation. International Biodeterioration & Biodegradation, 113, 310-317.

      [36] Chun, M. H., Kim, E. K., Yu, S. M., Oh, M. S. & Moon, K. Y. (2011). GC/MS combined with chemometrics methods for quality control of Schizonepeta tenuifolia Briq: Determination of essential oils. Microchemical Journal, 97, 274-281.

      [37] Wang, Y., & Huang, L. (2015). Comparison of two species of Notopterygium by GC-MS and HPLC. Molecules, 20, 5062-5073.

      [38] Silva, F. M. A. D., Koolen, H. H. F., Pereira, J. L. D. S., Flach, A., Costa, L. A. M. A. D., Souza, A. D. L. D., & Pinheiro, M. L. B. (2015). Chemotaxonomy of the Amazonian Unonopsis species based on GC-MS and chemometric analysis of the leaf essential oils. Records of Natural Products, 9(4), 530-537.


 

View

Download

Article ID: 18817
 
DOI: 10.14419/ijet.v7i3.14.18817




Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.