A Probability relevance classification approach for service information discovery using semantic domain knowledge

  • Authors

    • V Srilakshmi
    • Dr K. Anuradha
    • Dr C. Shoba Bindu
    https://doi.org/10.14419/ijet.v7i3.29.19308
  • Information Discovery, Classification, Probability Relevance, Domain Knowledge.
  • Abstract

    The intense growth of information systems and domain services has made it difficult to provide accurate and relevant information in relation to queries and domain service needs. Conventional domain service categorization facilitates searching for related services and helps to determine classification with defined domain service knowledge and taxonomy, but it fails to relate the service which is conceptually related as such. The nonexistence of any automated mechanism for domain knowledge and taxonomy enhancement causing a high number of irrelevant services information discovery for a requested query. This paper proposes a Probability Relevance Classification (PRC) approach to overcoming the constraint of automatic classification and conceptual knowledge enhancement through constructing relevance domain knowledge semantically in support of Domain Ontology Model (DOM). The proposed PRC approach classifies the information in support of a customized Naive Bayes method and Semantic Terms Similarity method in association to DOM constructed. The experimental assessment of the recommended approach shows an improvement in the service classification and achieves better relevance results in related to the service query request. The classification accuracy in comparison with the existing classifiers shows an improvisation of the proposal.

     

     

  • References

    1. [1] J. Li, N. Zaman, A. Rayes, E. Custodio, "Semantics - enhanced Online Intellectual Capital Mining Service for Enterprise Customer Centers", IEEE Transactions On Services Computing, Vol. 10, pp. 436 - 447, 2017.

      [2] M. Shirakawa, K. Nakayama, T. Hara, S. Nishio, "Wikipedia-Based Semantic Similarity Measurements for Noisy Short Texts Using Extended Naive Bayes", IEEE Emerging Topics in Computing, Vol. 3, No. 2, 2015.

      [3] K. Belhajjame, S. M. Embury, and N. W. Paton "Verification of Semantic Web Service Annotations Using Ontology-Based Partitioning", IEEE Transactions On Services Computing, Vol. 7, No. 3, July-September 2014.

      [4] G. X. Xu, C.-xhi Wang, "Semantic classification method for web network", Springer - Cluster computation conference, DOI 10.1007/s10586-017- 0742-6, 19, 2017.

      [5] P. Borkowski, K. Ciesielski, "Semantic classifier approach to document classification", CSIR Poland, 2017.

      [6] S. Vogrincic, Z. Bosnic , "Ontology-based multi-label classification of economic articles", Computer Science and Information Systems, Vol.8(1), pp.101-19, 2011.

      [7] X. Jiang and A.-H. Tan, "Mining Ontological Knowledge from Domain-Specific Text Documents", Proc. Fifth IEEE International Conference Data Mining (ICDM '05), pp. 665-668, 2005.

      [8] S. Sekine and H. Suzuki, "Acquiring Ontological Knowledge from Query Logs", Proc. 16th International Conference World Wide Web, pp. 1223-1224, 2007.

      [9] S. Gauch, J. Chaffee, and A. Pretschner, "Ontology-Based Personalized Search and Browsing", Web Intelligence and Agent Systems, vol. 1, nos. 3/4, pp. 219-234, 2003.

      [10] B. Tang, H. He, P. M. Baggenstoss, S. Kay "A Bayesian Classification Approach Using Class-Specific Features for Text Categorization", IEEE Transactions on Knowledge and Data Engineering, Volume: 28, Issue: six Pages: 1602 - 1606, 2016.

      [11] E. Al-Masri and Q.H. Mahmoud, "Investigating Web Services on the World Wide Web", Proc. 17th International Conference World Wide Web (WWW '08), Apr. 2008.

      [12] A. Doan, J. Madhavan, P. Domingos, and A. Halevy, "Learning to Map between Ontologies on the Semantic Web", Proc. 11th International Conference World Wide Web, pp. 662-673, 2002.

      [13] F.-Dombeu, J., Huisman, M., "Combining ontology development methodologies and semantic web platforms for e-government domain ontology development", International Journal of Web & Semantic Technology, Vol.2 (2), pp.12-25, 2011.

      [14] M. Janik, K. Kochut, "Wikipedia in action: Ontological knowledge in text categorization", IEEE International Conference on Semantic Computing, pp.268-75, 2008.

      [15] R. Gligorov, W. ten Kate, Z. Aleksovski, and F. van Harmelen, "Using Google Distance to Weight Approximate Ontology Matches", Proc. 16th International Conference World Wide Web, pp. 767-776, 2007.

      [16] A. Rozeva, "Classification of text documents supervised by domain ontologies", Applied Technologies & Innovations, Vol. 8, pp.1-12, 2012.

      [17] X. Jiang and A.H. Tan, "Mining Ontological Knowledge from Domain-Specific Text Documents", Proc. Fifth IEEE International Conference Data Mining (ICDM '05), pp. 665-668, 2005.

      [18] R. Mohanty, V. Ravi, M. Patra, "Classification of Web Services Using Bayesian Network", In Journal of Software Engineering and Applications, pp. 291-296, 2012.

      [19] A. Sieg, B. Mobasher , R. Burke, "Web Search Personalization with Ontological User Profiles", ACM CIKM'07, isboa, Portugal, pp. 6-8, 2007.

      [20] A. Singh and K. Nakata, "Hierarchical classification of web search results using personalized ontologies", Proc. 3rd International Conference on Universal Access in Human-Computer Interaction, Las Vegas, NV, 2005.

      [21] X. Tao, Y. Li, N. Zhong, and R. Nayak, "Ontology Mining for Personalized Web Information Gathering", Proc. IEEE/WIC/ACM International Conference Web Intelligence, pp. 351-358, 2007.

      [22] T. Tran, P. Cimiano, S. Rudolph, and R. Studer, "Ontology-Based Interpretation of Keywords for Semantic Search", Proc. Sixth International Semantic Web and Second Asian Semantic Web Conference (ISWC '07/ ASWC '07), pp. 523-536, 2007.

      [23] Y. Li and N. Zhong, "Mining Ontology for Automatically Acquiring Web User Information Needs", IEEE Trans. Knowledge and Data Engineering, Vol. 18, no. 4, pp. 554-568, Apr. 2006.

      [24] Z. Duo, L. Zi, and X. Bin, "Web service annotation using ontology mapping", In IEEE International Workshop on Service-Oriented System Engineering, pp. 235-242, 2005.

      [25] M. Corella, P. Castells, "Semi-automatic semantic-based Web service classification", In Springer Business Process Management Workshops, Vol. 4103, pp. 459-470, 2006.

      [26] L. Yao, Q. Z. Sheng, A. H.H. Ngu, J. Yu, and A. Segev, "Unified Collaborative and Content-Based Web Service Recommendation", IEEE Transactions On Services Computing, Vol. 8, No. 3, May/June 2015.

      [27] H. Dong and F. K. Hussain, "Self-Adaptive Semantic Focused Crawler for Mining Services Information Discovery", IEEE Transactions on Industrial Informatics, Vol. 10, No. 2, May 2014.

      [28] Q. He, L. Qiu, G. Zhao, S. Wang, "Text categorization based on domain ontology", In Springer Web Information Systems - WISE 2004, Vol.3306, pp.319-24, 2004.

      [29] J. Ma, W. Xu, Y.-h.Sun, E. Turban, S. Wang, O. Liu, "An Ontology-Based Text - Mining Method to Cluster Proposals for Research Project Selection", IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, Vol. 42, Iss. 3, pp. 784 - 790, 2012.

      [30] E. A. Calvillo, A. Padilla, J. Munoz, J. Ponce, J. T. Fernandez, "Searching research papers using clustering and text mining", Proc. for IEEE International Conference on Electronics, Communications and Computing, pp. 78-81, 2013.

      [31] S. C. Punitha, M. Punithavalli, "Performance Evaluation of Semantic-Based and Ontology-Based Text Document Clustering Techniques", Proc. for Elsevier International Conference on Communication Technology and System Design, Procedia Engineering, Science Direct, pp. 100-106, 2012.

      [32] M. M. Gowthul Alam, S. Baulkani, "A Hybrid Approach for Web Document Clustering Using K-means and Artificial Bee Colony Algorithm", International Journal of Intelligent Engineering and Systems, Vol. 9, No.4, 2016.

      [33] N. Oldham, C. Thomas, A. Sheth, and K. Verma, "METEOR-S Web Service Annotation Framework with Machine Learning Classification", In Semantic Web Services and Web Process Composition, Vol. 3387, pp. 137-146, Jan. 2005.

      [34] A. Harth, M. Janik, and S. Staab, "Semantic Web architecture", In Springer Handbook of Semantic Web Technologies, pp. 43-75, 2011.

      [35] N. Zhong, "Representation and Construction of Ontologies for Web Intelligence", International Journal of Foundation of Computer Science, vol. 13, no. 4, pp. 555-570, 2002.

      [36] R. Navigli, P. Velardi, and A. Gangemi, "Ontology Learning and Its Application to Automated Terminology Translation", IEEE Intelligent Systems, Vol. 18, No. 1, pp. 22-31, 2003.

      [37] W. Zang, F. Xiao, "Using SVD on Clusters to Improve Precision of Inter-document Similarity Measure", In Computational Intelligence and Neuroscience, Vol. 10, 2016.

  • Downloads

  • How to Cite

    Srilakshmi, V., K. Anuradha, D., & C. Shoba Bindu, D. (2018). A Probability relevance classification approach for service information discovery using semantic domain knowledge. International Journal of Engineering & Technology, 7(3.29), 543-549. https://doi.org/10.14419/ijet.v7i3.29.19308

    Received date: 2018-09-09

    Accepted date: 2018-09-09