PAPR Analysis of Fifth Generation Multiple Access Waveforms for Advanced Wireless Communication

  • Authors

    • Kommabatla Mahender
    • Tipparti Anil Kumar
    • K S Ramesh
    2018-09-01
    https://doi.org/10.14419/ijet.v7i3.34.19364
  • OFDM, PAPR, SC-FDMA, UFMC, FBMC(Filter-Bank Multi Carrier), GFDM(generalized frequency division multiplexing), CCDF(complementary cumulative distribution function)
  • Abstract

    This paper describes the aspects of multiple access for emerging (5G) Wireless Communication Systems. Orthogonal Frequency Division Multiplexing (OFDM) is best suited for fourth generation (4G) but it suffers from the problem of high Peak to Average Power Ratio (PAPR) & Side band leakage. Single carrier frequency division multiple access (SC-FDMA) has worked like an alternative to OFDMA only in the uplink process and PAPR was reduced. OFDM based 4G network is not capable of supporting diverse applications and these applications can be implemented by 5G.  High traffic requirements of 5G can be evaluated by using multiple access schemes, namely filter-bank multi-carrier (FBMC), universal-filtered multi-carrier (UFMC), generalized frequency-division multiplexing (GFDM). Comparison of PAPR reduction is done based on Complementary Cumulative Distribution Function (CCDF), for various multiple access 5G waveforms. 

     

  • References

    1. [1] G Wunder, M Kasparick, S ten Brink, F Schaich, T Wild, I Gaspar, E Ohlmer, SKrone, N Michailow, A Navarro, G Fettweis, D Ktenas, V Berg, M Dryjanski, SPietrzyk, B Eged, in IEEE 77th Vehicular Technology Conference. 5GNOW:Challenging the LTE Design Paradigms of Orthogonality andSynchronicity, (2013), pp. 1–5. doi:10.1109/VTCSpring.2013.6691814

      [2] G Andrews, S Buzzi, W Choi, SV Hanly, A Lozano, ACK Soong, JC Zhang, What will 5G be? IEEE J. Sel. Areas Commun. 32(6), 1065–1082 (2014). doi:10.1109/JSAC.2014.2328098

      [3] Z Wang, GB Giannakis, Wireless Multicarrier Communications. IEEE Signal Process Mag. 17(3), 29–48 (2000). doi:10.1109/79.841722

      [4] MG Bellanger, FBMC physical layer: a primer. Technical report, PHYDYAS (2010). http://www.ict-phydyas.org/teamspace/internal-folder/FBMCPrimer_ 06-2010.pdf. Accessed 4 Oct 2016

      [5] N Michailow, R Datta, S Krone, M Lentmaier, G Fettweis, in German Microwave Conference (GeMiC). Generalized Frequency Division

      [6] Multiplexing: A Flexible Multi-Carrier Modulation Scheme for 5th Generation Cellular Networks, (2012). https://mns.ifn.et.tu-dresden.de/ Lists/nPublications/Attachments/809/main.pdf

      [7] T Wild, F Schaich, Y Chen, in 19th International Conference on Digital Signal Processing. 5G Air Interface Design Based on Universal Filtered (UF-)OFDM, (2014), pp. 699–704. doi:10.1109/ICDSP.2014.6900754

      [8] J Li, E Bala, R Yang, Resource Block Filtered-OFDM for Future Spectrally Agile and Power Efficient Systems. Phys. Commun. 11, 36–55 (2014). doi:10.1016/j.phycom.2013.10.003

      [9] M Matthe, LL Mendes, I Gaspar, N Michailow, D Zhang, G Fettweis, Multiuser time-reversal stc-gfdma for future wireless networks. EURASIP J. Wirel. Commun. Netw. 2015(1), 132 (2015). doi:10.1186/s13638-015-0366-6

      [10] SA Cheema, K Naskovska, M Attar, B Zafar, M Haardt, in WSA 2016; 20th International ITG Workshop on Smart Antennas. Performance comparison of space time block codes for different 5G air interface proposals, (Munich, 2016), pp. 1–7gfdm, (2015), pp. 1–2. doi:10.1109/VTCFall.2015.7391033

      [11] M Renfors, T Ihalainen, TH Stitz, in 2010 European Wireless Conference (EW). A block-Alamouti scheme for filter bank based multicarrier transmission, (2010), pp. 1031–1037. doi:10.1109/EW.2010.5483517

      [12] R Zakaria, DL Ruyet, M Bellanger, in 2010 European Wireless Conference (EW). Maximum likelihood detection in spatial multiplexing with fbmc, (2010), pp. 1038–1041. doi:10.1109/EW.2010.5483520

      [13] B Farhang-Boroujeny, OFDM Versus Filter Bank Multicarrier. IEEE Signal Process Mag. 28(3), 92–112 (2011). doi:10.1109/MSP.2011.940267

      [14] T Fusco, A Petrella, M Tanda, in 3rd International Symposium on Communications on Communications, Control and Signal Processing.

      [15] Sensitivity of Multi-User Filter-Bank Multicarrier Systems to Synchronization Errors, (2008), pp. 393–398. doi:10.1109/ISCCSP.2008.4537257

      [16] F Schaich, T Wild, Y Chen, in 79th IEEE Vehicular Technology Conference. Waveform Contenders for 5G—Suitability for Short Packet and Low Latency Transmissions, (2014), pp. 1–5. doi:10.1109/VTCSpring.2014.7023145

      [17] M Kasparick, Y Chen, J-B Doré, M Dryjanski, IS Gaspar, 5G Waveform Candidate Selection D 3.2. Technical report, 5GNow (2014). http://www. 5gnow.eu/wp-content/uploads/2015/04/5GNOW_D3.2_final.pdf. Accessed 30 Dec 2016

      [18] I Gaspar, N Michailow, A Navarro, E Ohlmer, S Krone, G Fettweis, in 77th IEEE Vehicular Technology Conference. Low Complexity GFDM Receiver Based on Sparse Frequency Domain Processing, (2013), pp. 1–6. doi:10.1109/VTCSpring.2013.6692619

      [19] A Aminjavaheri, A Farhang, A RezazadehReyhani, B Farhang-Boroujeny, in IEEE Signal Processing and Signal Processing Education Workshop. Impact of timing and frequency offsets on multicarrier waveform candidates for 5G, (2015), pp. 178–183. doi:10.1109/DSP-SPE.2015.736954

      [20] R Gerzaguet, D Kténas, N Cassiau, J-B Doré, Comparative study of 5G waveform candidates for below 6 GHz air interface. Technical report,LETI, CEA Tech (2016). https://docbox.etsi.org/Workshop/2016/ 201601_FUTURERADIOTECHNOL_WORKSHOP/ S05_NEW_RADIO_ACCESS_TECHNO_SERV_ENVIR_PART_2/ 5G_WAVEFORM_COMPARATIVE_STUDY_BELOW_6GHZ_KTENAS_CEA_LETI. pdf

      [21] X Zhang, L Chen, J Qiu, J Abdoli, On the waveform for 5G. IEEE Commun. Mag. 54(11), 74–80 (2016). doi:10.1109/MCOM.2016.1600337CM

      [22] YS Cho, J Kim, WY Yang, CG Kang, MIMO-OFDMWireless Communications with MATLAB_. (Wiley, 2010). doi:10.1002/9780470825631.refs http://dx. doi.org/10.1002/9780470825631.refs

      [23] MG Bellanger, in IEEE International Conference on Acoustics, Speech, and Signal Processing. Specification and design of a prototype filter for filter bank based multicarrier transmission, vol. 4, (2001), pp. 2417–2420. doi:10.1109/ICASSP.2001.940488

      [24] M Payaró, A Pascual-Iserte, M Nájar, in European Wireless Conference. Performance comparison between FBMC and OFDM in MIMO systems under channel uncertainty, (2010), pp. 1023–1030. doi:10.1109/EW.2010.5483521

      [25] ] S Van Caekenberghe, S Pollin, A Bourdoux, L Van der Perre, J Louveaux, in 32nd WIC Symposium on Information Theory in the Benelux. Preamble-Based Channel Estimation for Filterbank Multicarrier Wireless Systems, (Brussels, 2010)

      [26] J Louveaux, L Baltar, D Waldhauser, M Renfors, M Tanda, C Bader, E Kofidis, PHYDYAS D 3.1. Technical report, PHYDYAS (2008). www.ictphydyas.org/ delivrables/PHYDYAS-D3.1.pdf/at_download/file. Accessed 20 Sept 2016

      [27] X Wang, T Wild, F Schaich, A Fonseca dos Santos, in 20th European Wireless Conference. Universal Filtered Multi-Carrier with Leakage-Based Filter Optimization, (Barcelona, 2014), pp. 1–5

      [28] X Wang, Channel Estimation and Equalization for 5G Wireless Communication Systems Master’s thesis. Institut für Nachrichten übertragung, Universität Stuttgart (2014)

      [29] SS Prasad, CK Shukla, RF Chisab, in Third International Conference on Computing Communication Networking Technologies. Performance analysis of OFDMA in LTE, (2012), pp. 1–7. doi:10.1109/ICCCNT.2012.6395933

      [30] F Horlin, A Bourdoux, Digital Compensation for Analog Front-Ends: a New Approach toWireless Transceiver Design. (Wiley, Chichester, 2008)

      [31] A Maltsev, A Lomayev, A Khoryaev, A Sevastyanov, R Maslennikov, in 7th IEEE Consumer Communications and Networking Conference. Comparison of Power Amplifier Non-Linearity Impact on 60 GHz Single Carrier and OFDM Systems, (2010), pp. 1–5. doi:10.1109/CCNC.2010.5421601

      [32] M Webster, K Halford, Suggested PA Model for 802.11 HRb. Technical report, Intersil Corporation (2000). http://www.ieee802.org/11/Documents/DocumentArchives/2000_docs/02948Sb-Suggested%20PA %20Model%20for%20802.11%20HRb.ppt. Accessed 20 Sept 2016

      [33] G Fettweis, M Krondorf, S Bittner, in 69th IEEE Vehicular Technology Conference. GFDM - Generalized Frequency Division Multiplexing, (2009), pp. 1–4. doi:10.1109/VETECS.2009.5073571

      [34] [H Bouhadda, H Shaiek, D Roviras, R Zayani, Y Medjahdi, R Bouallegue, Theoretical analysis of BER performance of nonlinearly amplified FBMC/OQAM and OFDM signals. EURASIP J. Adv. Signal Process. 2014(1), 1–16 (2014). doi:10.1186/1687-6180-2014-60

      [35] N Michailow, I Gaspar, S Krone, M Lentmaier, G Fettweis, in International Symposium on Wireless Communication Systems. Generalized frequency division multiplexing: analysis of an alternative multi-carrier technique for next generation cellular systems, (2012), pp. 171–175. doi:10.1109/ISWCS.2012.6328352

      [36] T Wild, F Schaich, in IEEE 81st Vehicular Technology Conference. A Reduced Complexity Transmitter for UF-OFDM, (2015), pp. 1–6.

      doi:10.1109/VTCSpring.2015.7145643

  • Downloads

  • How to Cite

    Mahender, K., Anil Kumar, T., & S Ramesh, K. (2018). PAPR Analysis of Fifth Generation Multiple Access Waveforms for Advanced Wireless Communication. International Journal of Engineering & Technology, 7(3.34), 487-490. https://doi.org/10.14419/ijet.v7i3.34.19364

    Received date: 2018-09-09

    Accepted date: 2018-09-09

    Published date: 2018-09-01