Direct Product of Finite Interval-Valued Intuitionistic Fuzzy Ideals in BF-Algebra

 
 
 
  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract


    The present paper gives direct product of finite interval-valued intuitionistic fuzzy ideals.  Furthermore, we add more useful results and also prove that, let be interval-valued intuitionistic fuzzy ideal of BF-algebra X. If  and for any, then  is an interval-valued intuitionistic fuzzy H-ideal of BF-algebra X.

     


  • Keywords


    BF-algebras, interval-valued intuitionistic fuzzy sets, interval-valued intuitionistic fuzzy ideals, interval-valued intuitionistic fuzzy closed ideal.

  • References


      [1] S. Abdullah, M. Aslam, N. Amin and

      [2] M. Taimur, Direct product of finite fuzzy ideals in LA- semigroups, Annals of Fuzzy Mathematics and Informatics, 2(2) (2011), 151-160.

      [3] S. Abdullah, M. Aslam, M. Imran and M. Ibrar, Direct product of intuitionistics fuzzy ideals in LA-semigroups-II, Annals of Fuzzy Mathematics and Informatics, 2 (2011), 151-160.

      [4] M. Aslam, S. Abdullah and N. Nasreen, Direct product of intuitionistics fuzzy ideals in LA-semigroup, Fuzzy Sets, Rough Sets and Multivalued operations and Applications, 3(1)(2011), 1-9.

      [5] H. Aktas and N. Cagman, Generalized product of fuzzy subgroups and t-level subgroups, Mathematical Communications, 11 (2006), 121-128.

      [6] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy sets and Systems, 20(1) (1986), 87-96.

      [7] K. T. Atanassov and G. Gargov, Interval valued intuitionistic fuzzy sets, Fuzzy Sets and Systems, 31(1989), 343-349.

      [8] [7] K. T. Atanassov, Intuitionistic fuzzy sets, Springer, Heidelberg, 1999.

      [9] K. Iseki and S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japon., 23(1978), 1-26.

      [10] K. Iseki and S. Tanaka, Ideal theory of BCK-algebras, Math. Japon.,21 (1976), 351-366.

      [11] Y. B. Jun, Closed fuzzy ideal in BCI-algebra, Math. Japon., 3(1993), 199-202.

      [12] Y. B. Jun and K. H. KIM, Intuitionistic fuzzy ideals of BCK-algebras, Int. J. Math. Math. Sci., 24(12)(2000), 839-849.

      1. K. Ray, On product of fuzzy subgroups, Fuzzy Sets and System, 11 (1983), 79-89.

      [13] [13] H. Sherwood, Product of fuzzy subgroups, Fuzzy Sets and System, 105 (1999), 181-183.

      [14] B. Satyanarayana, M. V. Vijayakumar, D. Ramesh, and R. Durga Prasad, Interval Valued ntuitionistic fuzzy BF-subslgebras, Acta Ciencia Indica, XXXVIII M, 4 (2012), 637-644.

      [15] B. Satyanarayana, D. Ramesh and R. Durga Prasad On Interval-valued intuitionistic fuzzy ideals of BF-algebras, J. Comp. & Math. Sci. Vol.3 (1), 83-96 (2012)

      [16] B. Satyanarayana and R. D. Prasad, Direct product of finite intuitionistic fuzzy BCK- algebras, Global J. Pure Appl. Math., 5(2)(2009), 125-138.

      [17] L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 33


 

View

Download

Article ID: 19404
 
DOI: 10.14419/ijet.v7i3.34.19404




Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.